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SUMMARY

-Study of the circulation is complicated by factors such as the visco-elastic
properties of the vessel walls, the non-Newtonian behaviour of the blood and
the deformable nature of the erythrocytes and other particles.

The effects and importance of these factors can be fruitfully studied by the
use of mathematical models even though these necessarily incorporate simpli-
fying assumptions.

Two selected aspects involving (a) micro-circulation - particulate flow, and
(b) macro-circulation - pulsatile flow, are treated by numerical techniques.
The simplifying assumptions necessary and the implications thereof are
discussed.

(a)

(b)

Particulate Flow Model. A simplified two-dimensional model of idealised

particulate flow with (i) individual particles, (ii) groups of particles
and (iii) a continuous array of particles in a tube is analysed to pro-
vide a detailed mapping of flow patterns around the particles and the
effect of particle aggregation on pressure gradients.

Pulsatile Flow Model. The model employed is one-dimensional, although a
distensible vessel wall is incorporated, The effects of some system
parameters on the character of the flow wave as computed from pressure
data, are investigated.

Some of the results of these model analyses are described and their relevance
in the overall blood circulation system is discussed.
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INTRODUCTION

The study of the biomechanics of the circulatory system has grown rapidly in the past
decade. Qualitative studies such as the high speed colour motion photography of Bloch (1)
vividly portray the complexities of flows in the microcirculation and such studies have
stimulated the development of idealised models which not only allow quantitative information to
be evaluated but can provide detailed flow characteristics in regions of the circulation which

are virtually inaccessible to present day experimental techniques.

Studies of the circulation must eventually involve a combination of a macroscopic systems
approach and a microscopic mechanics approach. The two areas of study are not unrelated as the
overall macro-study relies on integration of the detailed fundamental analyses to provide bulk

characteristics of the system.

The Circulation.

The circulation channels consist of two hierarchies - those leading from the heart and
those carrying blood to the heart. The channel size reduces as distance from the heart
increases and the two hierarchies meet in the thoroughfare channels (small arterioles and
venules) and merge in the capillaries and the perivascular beds of tissue as outlined by
Bugliarello (2). The average diameters of the various channels have been summarised by

Whitmore (3) as -

Large Arteries Arteries Arterioles Large Veins Veins Venules
(10000u) (1600u) (40u) I(ZOOOOU) (4000u) (60u)
I

| Thoroughfare Channels {25p)|

l ]
[ Capillaries (16p) |

Tissues

Reynolds Number (RN) based on the channel diameter varies from 0.02 in the smallest
capillaries to 3 x 10° in the largest veins.

The principal pressure gradients in the mammalian system occur in the arterioles where
about 60% of the total pressurc losses occur whilst about 25% of the pressure loss occurs in
the capillaries and about 10% in the veins (3).

Although capillaries and the smaller arterioles account for most of the energy losses it
is important to note that at any instant under normal circumstances only a fraction (1/5 to 1/3)
of the capillaries are functioning.

The microcirculation is that part of the circulatory system where channel sizes are gener-
ally less than 100p and in which, (i) most pressure losses occur and (ii) exchange of heat and
mass between the circulation system and the surrounding beds of tissue take place.

Material Properties.

The material properties of the fluid - blood - and the channel wall have been the subject
of many studies (4,5). Suffice it to say here that blood is a multi-phase fluid with the
largest suspended phase being the red-blood cells erythrocytes. The dimensions of the
erythrocyte are of the order of 2p (thickness) and 10u (diameter) and therefore such particles
are particularly significant in studying flows in the microcirculation channels of diameters
5u - 100p. The smaller particulate constituents of blood attain importance in considering the
mechanisms used for attaining effective mass (and heat) transfers.

No rigorous constitutive equations for blood or its components have been reported although
the rheological properties of the erythrocyte and the conveying fluid are fundamental pre-
requisites to any detailed understanding of the microcirculation.

The mechanical properties of the vessel walls particularly in the larger channels of the
circulation introduce further complications into any analytical study. The arteries and
arterioles and to some extent the veins alter their size under the action of muscle cells which
line their walls (2), - the capillaries do not alter their diameter in this way but control flow
by restrictions (sphincters) at the entrance to the channels. The visco-elastic properties of
the larger vessel walls have been studied by many researchers, including Anliker, llistand and
Ogden (6), Dick, Kendrick, Matson and Ridesut (7) and Gow and Taylor (8).
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A further factor which must be included in any realistic study is the pulsatile character-
istic of blood flow. Generally these characteristics have been neglected in studies of the
microcirculation where the multi-phase aspects of the fluid need to be considered, however, in
the larger vessels where the fluid may be assumed single-phased many studies involving pulsatile

flow have been reported (9,10,11).

Idealised Models.

In this paper two studies involving idealised models are outlined - (a) a study in the
microcirculation in which a two-phase fluid is considered in a very simplified model aimed at
studying patterns of erythrocyte aggregation that have been observed experimentally and (b) a
study of pulsatile flow behaviour in the larger arterial vessels in which the visco-elastic wall
properties are incorporated in a one-dimensional model of an arterial segment.

In each study numerical techniques are applied to an idealised problem of biomechanics. The
possible extensions of the analysis to more refined and realistic problems are obvious but, in-
evitably, restrictions will be imposed by present day computational capabilities. A further
problem is imposed by the difficulty in obtaining adequate physical data to prove the analytical
models.

Particulate Flow Model.

hh kb L LL AL LML LL LA LALLM LLL L L L L
A number of observers of capillary flow,
Merrill and Wells (12) and Benis (13), have des-
cribed a typical erythrocyte arrangement as a
'stacked coin configuration' (Fig.l) particularly B
where the capillary size is of the same order of
magnitude as the erythrocyte diameter. Bugliar- /
FITT77777 77777727 2072727 227272277222 2277

ello and Yanizeski (14) have demonstrated this

same phenomenon experimentally in a rectangular

Heli-Shaw channel in which rigid non-buoyant par-

ticles tended to attain and maintain particular ; i .
cluster configurations for steady flow conditions. Figure 1. Stacked coin configuration.
Prothers and Burton (15) 1962, suggested their

now well known 'bolus flow' analogy, in which the

red blood cells were modelled by large scale air

bubbles within a cylindrical tube with the plasmatic gaps modelled by water, as the earliest
study of the fluid dynamics of cluster flow involving axial gaps between the fluid.

Brandt and Bugliarello (16) 1965, considered an idealised two-dimensional model in which the
red-cell particles were modelled by rigid rectnagular blocks occupying the full cross-section of
the channel and the steady creeping flow equations (for zero Reynolds number) were solved numeri-
cally for the flow in the gaps between the particles with rigid boundary conditions. Bugliarello
and Hsaio (17) extended this model to the corresponding axisymmetric case. The results were used
to suggest that for a given hematocrit of 40% the pressure drop would be considerably reduced if
the erythrocytes are grouped tightly into clusters of 4 or 5 cells rather than being spaced even-
ly and, further, increasing the number of cells in each cluster, beyond 5, does not gain any sig-
nificant extra pressure reduction. These analyses assumed that the 'erythrocytes! spanned the
complete cross-section and friction losses between the particle and the wall or within the narrow
bands of flow between the particle and the wall or between particles were not taken into account.
Inertia effects were ignored which is reasonable for the creeping flows of capillaries.

More recently Sutera and Hochmuth (18) have developed a sophisticated large scale experi-
mental model involving buoyant discoidal and plane convex discs flowing at low RN in cylincrical
tubes. Wang and Skalak (19) have obtained analytical solutions for the movement of arrays of
rigid spherical and spheroidal particles (Chen and Skalak) (20) and, also, for the case of
viscous liquid drops (Hyman and Skalak) (21).

These various solutions illustrate that the ratio of the lateral dimension of the particle
to the tube diameter is a more important parameter than the cell spacing or orientation in affec-
ting pressure drop and Sutera and Hochmuth (18) indicated that clusters of cells showed a lower
energy loss than isolated cells separated by distances greater than the tube diameter.

Numerical Model,

With these various models and hypotheses in mind a series of numerical studies of an ideal-
ised two-dimensional, two-phased flow of single (and arrays of) buoyant particles in a tube have
been undertaken. The particle shape for the earliest models was rectangular although circular,
spherical and discoidal particles are currently being considered. Fig.2 shows a typical set of
boundary conditions for the problem.
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Fortunately some simplifications appear to be per-

missible in modelling cpaillary flow as a numerical
problem - thus (i) the plasma may be considered as a
Newtonian fluid (12), (ii) the flexibility of the 'red
blood cell' can be neglected (18), (iii) the capillary
walls may be assumed rigid and straight (12),(18),(22)
and finally (iv) particulate constituents smaller than
erythrocytes may be neglected in any fluid dynamic
analysis. Laminar inertia terms have been retained in
the solutions so that the results would be applicable
for Reynolds numbers of the order found in flows in
the larger arterioles,

BODLEY, STARK & WONG

The numerical studies have, in the first instance, Fig.2 Typical conditions for array model.

assumed that the particles are moving with constant
velocity. Under these circumstances zero net drag is
experienced by the particles and if the particles are
neutrally buoyant and moving with the fluid with a
velocity Vp when the fluid has a mean velocity Vyp then
a steady-flow condition is appropriate for analysis in
which the particle is held stationary and the walls
are moved with a velocity (VB) equal and opposite to
Vp. The appropriate value of VB that results in zero
net drag on the particles must be determined for each
configuration of particle, channel and RN. The com-
plete flow field is determined by solving the Navier-
Stokes equations, for the appropriate houndary con-
ditions, using a numerical technique which has been
developed from the squaring method of Thom and Apelt
(23). Complete details of the technique and the
solutions obtained will be published separately,
Navier-Stokes equations for zero RN are linear so
that consideration of any two solutions gives the
zero-drag case, however, for higher RN the equations
are non-linear and interpolation of a number of
solutions for different VB values is required to
deduce the zero-drag case.

The

The field equations are solved to give stream-
function, vorticity, velocity and pressure values
throughout the flow field and some typical results are
plotted as Figs.3,4 and 5. Fig.3 gives the stream-
function pattern relative to the particle for an array
at zero RN and shows the relative vortex formation for
a = .33, 8= .75, y = .25 as defined between particles
in the two-phase flow.
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Fig.3 Streamlines relative to particle at
RN=0.0 for arrays o=.33,B=.75,y=.25.
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Fig.5 Vr/Vy and Pp for arrays with a=,33,

Fig.4 Vp/Vp for single particles w=1,8 various.
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Fig.4 plots the ratio of V/Vp for a single particle with a = 1.0 and B varying from zero to
1.0. Vg is the terminal particle velocity - i.e. the constant velocity of the particle for zero
net drag and Vp is the mean velocity of flow.

" Fig.5 plots the variation of Vr/Vm for an array of particles with o = 0.33, 8 = 0.75 and v
(i.e. the particle spacing) varying and also shows the ratio of pressure gradient to the corres-
ponding pressure gradients for Poiseuille flow for the same variety of solutions.

The Pulsatile Flow Model,

In published studies of the pressure-flow relation in arteries, the objective, most common-
1y, has been to compute the flow from the pressure gradient. The complete system is, as
Rudinger (5) says, far too complicated to be amenable to analysis and pressure-flow studies have
generally been confined to short, straight, unbranched segments.

In the larger systemic arteries blood can be treated as an incompressible, Newtonian fluid
(24) and the pressure-flow relationship described by a set of non-linear, second order, partial,
differential equations, comprising the equatins of motion in three directions, the continuity
equation and an equation expressing the visco-elastic properties of the vessel wall.

The non-linearities are associated with the convective inertia forces, the viscous friction
forces and the wall elastic properties,

The equations have defied exact solution and recourse has consequently been made to
simplified models.

There are currently in vogue, two such simplified models of pulsatile arterial blood flow -
the linear, axisymmetric model (25) and the non-linear, one-dimensional model (26).

In the linear, axisymmetric model, variations in flow properties in both the longitudinal
and the radial directions are included. There are thus two physical dimensions in addition to
the dimension of time. The equations are transformed from the time to the frequency domain,
each frequency component is treated individually and, by virtue of the linearity of the
equations, the results may be superimposed. The problem is thus reduced to a two-dimensional
one.

The simplified non-linear model, on the cher hand, can only be reduced to a two-dimension-
al problem by eliminating one physical dimension. Thus flow properties are assumed to be invar-
iant in the radial direction and the problem treated is one-dimensional in the physical sense.

It is this second model, the non-linear, one-dimensional one, with which we will be
concerned in this paper.

Being non-linear, solutions for this model can only be obtained by numerical methods. The
equations are hyperbolic and solution is by the method of characteristics. Two non-linear terms
in the model express the convective inertia forces of the motion and vessel taper due to pressure
gradient and wall distensibility. These terms vanish in the case of an initially untapered
vessel with non-elastic walls, but have been shown to be important in tapered and distensible
vessels (27).

The non-linear one-dimensional model was first propounded by Lambert (28) and was refined
somewhat by Streeter, Keitzer and Bohr (29) who computed the flow wave in the segment from the
pressure data at the two ends. Dr. Streeter and his colleagues were aware that their model had
some severe limitations. In particular, the vessel wall was treated as linearly elastic, the
flow assumed to be turbulent and all energy losses were lumped in one term. In addition, the
wave celerity expression used predicted a decrease in wave celerity for increasing intraluminal
pressure, contradictory to experimental observation.

It has been our object to improve on the model used by Streeter et al by introducing, in

particular, the non-linear, visco-elastic wall properties, and realistic statements of the vis-
cous friction losses in the blood and the wave celerity function.

Artery Wall Properties.

The presence of a viscous element in the artery wall has been reported by a number of in-
vestigators, the most recent of whom are Anliker, Histand and Ogden (6) who investigated attenu-
ation of pressure pulses in the aorta and Gow and Taylor (8) who carried out in vivo studies on
the pressure-diameter relationship in arteries.
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Dick, Kendrick, Matson and Rideout (7) and Gow and Taylor (8) from in vivo experiments on
mongrel dogs, concluded that a small degree of visco-elastic non-linearity existed in the
arterial wall and was more pronounced in the more peripheral arteries than in the central ones.

Flow Properties.

It is generally accepted that, in the larger arteries, blood may be assumed to have a con-
stant viscosity. There are difficulties, however, in choosing an appropriate value of the vis-
cosity. Anticoagulants added to blood are known to have a significant effect on viscosity (5).
In addition there is the question of whether the flow is laminar or turbulent,

Energy losses due to viscous friction are known to be higher in pulsating flow than in
steady flow (9,10,11).

Streeter et al (26,29) assumed viscous losses proportional to v?/2D and the values of the
exponent and the constant of proportionality which yielded best agreement (on the basis of a
least squares criterion) between their computed flow wave and the experimentally recorded wave,
were determined. The exponent was invariably in the neighbourhood of 2, suggesting turbulent
flow. The constant of proportionality varied over a considerable range depending on the value of
the frequency parameter, = R vYwp/u where R = vessel radius, w = 2mx frequency in cycles/second,
p = fluid density and u = absolute viscosity. For the femoral artery (¢=3) the constant was,
typically, 0.5 for flow in the direction of vessel convergence and 0.76 for flow in the reverse

direction.

Wiggert and Keitzer (9) called the constant of proportionality an "index of energy dissi-
pation". The index is analogous for the case of pulsatile flow in tapered vessels, to the Darcy-
Weisbach friction factor, f, for steady flow in uniform pipes., It takes on higher values than f
because it incorporates, in addition to the steady flow friction losses, the energy losses due
to the pulsatile flow component and the taper of the vessel cross-section. Experimenting with
latex rubber tubing at o = 12-15, Wiggert and Keitzer found the index had a value of 0.05 for
turbulent pulsating flow in uniform tube of unstressed diameter 0.595 cm. For tapered tubes
(0,602 cm to 0.343 cm diameter over a length of 59.8 cm) the index varied with a from 0.1 to 0.2
for flow in the direction of convergence and was consistently 0.3 for flow in the reverse

direction.

The higher values of the index found by Streeter et al for arteries indicate the presence
of additional mechanisms of energy dissipation. The viscous element in the artery wall is
obviously one such mechanism.

Visco-elastic Model.

We have attempted to separate the energy losses into those attributable to the vessel wall
and the computations reported in this paper are based on a model incorporating a visco-elastic
wall. Vessel diameter at each end of the segment was derived from the pressure data by shifting
each harmonic of the pressure wave by a certain phase angle, resynthesising the wave and scaling
the amplitude appropriately. Gow (30)
suggested a constant phase shift of the
harmonics of 0.10 to 0.15 radians. Ac-
cordingly a shift of 0.13 radians was Y
used throughout these computations. | \
This procedure results in a viscous, [
linearly elastic wall. Instantaneous
diameter was assumed to vary linearly
over the length of the segment between
the corresponding values at the two ends.
Wave celerity was expressed as a linear,
increasing function of pressure. Lamin-
ar flow was assumed and the friction
factor based on the instantaneous velo-
city at each step of the computations
was derived from the Blasius expression
f = 64/RN.
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computation as 3 cP. >

The result should be compared with
the flow wave plotted in Fig.7, computed
b: Streeter et al on the basis of turbu-
lent flow in a purely elastic walled
model, with an index of energy dissi-
pation of 0.4 for flow in both the for-
ward, and the reverse directions.

Flow rate - cm3/sec
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Over the forward flow portions of
the wave, Streeter et al's model yields

closer agreement with the recorded wave, Bl y /
but over the reverse flow portion, the \ /
visco-elastic model yields the better 5 )
result. -
It should be remembered that the Figure 7. Broken line: Flow wave computed by
visco-elastic model assumed laminar flow Streeter et al. Turbulent flow, f =

and a friction factor appropriate to 0.4. Full line: Experimentally
steady flow in an untapered vessel. To recorded flow wave.

allow for the greater friction losses of
pulsatile flow in a tapered vessel,
artificially high values of the friction /&
factor were introduced simply by using
increased values of the coefficient of
viscosity, u. Wiggert and Keitzer found
a 2.5- to 5-fold increase in index for
pulsatile flow in a tapered vessle. Ac-
cordingly, a 2-2/3-fold increase in the
friction factor (p raised from 3 to 8
cP) was tried. The result is shown in
Fig.8 and agreement in both forward and
reverse portions of the wave is seen to \ pi
be much improved.
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Figure 8. Broken line: Computed flow wave using
visco-elastic model. Laminar flow, p =
8 c¢P. Full line: Experimentally
recorded flow wave.

The realisation of an accurate mathematical model of the complete circulatory system Is
still very remote. At this time the properties of the individual elements and their roles in
the overall system are only imperfectly understood. The two models developed in this paper
illustrate the advantages of applying mathematical techniques to the study of the parameters
affecting such complex systems as the circulation.

CONCLUSIONS
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