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Abstract

Extensional or elongational flows are most commonly associ-

ated with the study of rheology following the work of Trouton

(1906). In this paper we outline an asymptotic method for the

derivation of an extensional-flow model for the drawing of fi-

bres. We obtain ODEs describing the change in area of the

cross-section and the temperature from preform to fibre. In

general, these are coupled with a 2D transverse-flow problem

describing the evolution of the geometry in the cross-section

due to surface tension and pressure. The accuracy of the model

is demonstrated by comparison with experiments and finite-

element simulations, and its computational efficiency is briefly

discussed. Models may be obtained for other extensional flows

using similar methods.

Introduction

Honey dripping from a spoon is an extensional (or elongational)

flow; gravity causes the fluid to stretch. Such flows are ubiqui-

tous in nature and industry and include fibre drawing (or spin-

ning), the float glass process used for making sheet glass, and

a spider spinning a web. Extensional flows are also used in

rheometry to measure the extensional viscosity of liquids. Trou-

ton is the father of extensional rheometry, publishing in 1906

[18] two theoretical explanations and results from experiments

(including application of a tensile force to a rod of viscous fluid

and gravitational spinning of a fluid thread) which showed the

extensional viscosity of a Newtonian fluid to be three times its

shear viscosity. Today the extensional viscosity for a Newto-

nian fluid is often called the Trouton viscosity and the ratio of

the extensional and shear viscosities is called the Trouton ratio.

The Trouton ratio is readily derived by considering, as did Trou-

ton [18], the elongation of a uniform cylinder of (essentially) in-

compressible isotropic viscous fluid, assuming the rate of elon-

gational strain to be uniform in any cross-section. Concurrently

with elongation at rate e it must contract at rate e/2 in the trans-

verse directions. Setting x to be the axis along which elongation

occurs, and y and z to be the transverse directions, the rate-of-

strain tensor is

E =





e 0 0

0 −e/2 0

0 0 −e/2



 (1)

and the stress tensor is Σ = −pI + 2µE, where p is pressure,

µ is the shear viscosity, and I is the 3× 3 identity matrix. On

the free surface of the cylinder we set the stress to be zero, i.e.

Σ22 = Σ33 = 0, giving p =−µe. Then the elongational stress is

Σ11 =−p+2µe = 3µe = µT e and we have that the extensional

viscosity µT is three times the shear viscosity. A flow in which

the only non-zero components in the rate-of-strain tensor are on

the main diagonal, as in (1), is called a pure extensional flow.

Figure 1 shows a schematic of an essentially steady-state pro-

cess for the drawing of a long fibre. A thread of viscous fluid

or preform with temperature θin and cross-sectional area χ2
in is

fed through an aperture at x = 0 at a slow feed speed Uin. At

a distance L from the aperture, the thread is pulled at a much

larger draw speed Uout by a take-up roller. Between x = 0 and

x = 0, u =Uin

χ = χin, θ = θin

x = Lh

x = L, u =Uout
χ = χout
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Figure 1: Schematic diagram of the neck-down region, 0 ≤ x ≤
L, over which the initial cross-sectional area of the thread χ2

in

reduces to that of the fibre χ2
out due to the large draw speed Uout

relative to the feed speed Uin.

x = Lh < L the thread is heated and, from x = Lh to x = L it

cools to a solid. At the aperture the cross-section of the thread

may, as in the case of microstructured optical fibres, contain a

pattern of air channels and over the so-called neck-down region

0 ≤ x ≤ L the thread deforms greatly due primarily to the draw

ratio D =Uout/Uin ≫ 1 which results in reduction of the cross-

sectional area χ2 with x; surface tension and/or any pressure ap-

plied within the channels, also deforms the geometry. By mass

conservation the cross-sectional area at x = L is χ2
out = χ2

in/D.

This is the illustrative extensional-flow problem for this paper

although the methods are readily extended, for example, to the

unsteady problems of stretching a viscous fluid thread by ex-

tending both ends [20] and the slow dripping under gravity of a

viscous fluid from a tube [19, 17].

Motivated by the spinning of textile fibres, such as nylon,

and the blowing of tubular plastic film, Pearson and cowork-

ers [10, 12, 13] were pioneers in the modelling of these types

of flows, using asymptotic methods to derive extensional-flow

models under the assumption of an axisymmetric geometry.

Much work followed, only a little of which can be mentioned

here. Wilson [19] used force-balance arguments to derive a

model for the dripping of a viscous fluid from a tube. A general

formal derivation of the leading-order extensional-flow model

for the drawing of non-axisymmetric viscous fibres with sur-

face tension considered negligible was done by Dewynne and

others [5, 6], while Cummings and Howell [4] extended this

work to non-negligible surface tension. In more recent times in

the context of the drawing of microstructured optical fibres the

work has been extended to tubes [7, 8] and fibres of arbitrary

cross-sectional shape [1, 2, 15].

As shown in [2, 15], if only the final geometry of the fibre is

important but the evolution of that geometry along the neck-

down length is not important, and all material properties other

than the viscosity are constant, then temperature modelling is

not necessary. It is the harmonic mean of the viscosity over the

neck-down length, which determines the tension along the fi-



bre (and vice versa), that determines the shape of fibre obtained

from some initial preform geometry. Any temperature profile

that gives the same fibre tension and, hence, harmonic mean of

the viscosity, will result in the same fibre geometry from a given

initial geometry. It is, however, necessary that the fibre tension

can be measured and controlled (by adjusting the heater temper-

ature) during a fibre draw. If this is not the case or knowledge of

the geometry along the neck-down length is desired then tem-

perature modelling becomes necessary. The aim of this paper is

to couple a temperature model to the flow-only model for fibre

drawing of [2] and, in the process, to demonstrate asymptotic

methods for derivation of extensional-flow models. Another pa-

per is in preparation dealing with coupled flow and temperature

modelling in the case of temperature-dependent viscosity and

surface tension when temperature modelling becomes essential

just to determine the fibre geometry [16].

Model derivation

The derivation of extensional-flow models for problems of in-

terest here exploit the fact that the geometry is slender, i.e. the

axial length scale (in the direction of stretching) is much larger

than the width. An important consequence is that the axial com-

ponent of velocity, the pressure and the temperature are approx-

imately uniform in any cross-section which, in turn, permits

derivation of a much simpler model than would otherwise be

possible. This will be seen in the context of the fibre-draw prob-

lem shown in figure 1. It is not uncommon to simply start by

assuming the uniformity of these quantities in the cross-section,

however, we will not do this here but outline how this and the

final model may be derived using asymptotic methods; for more

details see [2, 4, 5, 6, 16].

Let xxx = (x,y,z) denote position, with stretching in the direction

of the x-axis (see figure 1), uuu = (u,v,w) be the velocity vector,

p be the pressure, and θ be the temperature. We start by con-

sidering that the dependent variables are, in general, functions

of position xxx and time t. We suppose that all fluid properties

are constant with the exception of the viscosity µ(θ) which is a

known function of temperature. We denote the shape of the ex-

ternal boundary of the thread by G(0)(xxx, t) = 0 and the shape of

each of the N internal holes to be G(i)(xxx, t) = 0, i = 1,2, . . . ,N.

The outward pointing normal vectors on the boundaries are,

hence, denoted by nnn(i) = ∇∇∇G(i)/|∇∇∇G(i)|. Recall that the cross-

sectional area at axial position x and time t is χ2(x, t) and, for

convenience, we also define Γ(x, t) to be the total length of all

of its boundaries. For our illustrative problem χ(0, t) = χin,

Γ(0, t) = Γin, and the shapes of the external boundary and the

internal holes at the aperture are denoted by G
(0)
in (y,z) = 0 and

G
(i)
in (y,z) = 0, respectively.

Full model

Assuming an incompressible Newtonian fluid, the governing

equations for the fluid flow are

∇∇∇ ···uuu = 0, (2a)

ρ

(

∂uuu

∂t
+uuu ·∇∇∇uuu

)

=−∇∇∇p+∇∇∇ ···
(

µ(θ)
(

∇∇∇uuu+(∇∇∇uuu)T
))

, (2b)

where ρ is the density of the fluid. On the external surface of

the cylinder and on the N internal surfaces, the dynamic and

kinematic boundary conditions are

−pnnn(i)+µ(θ)
(

∇∇∇uuu+(∇∇∇uuu)T
)

···nnn(i) =−(γκ(i)+ p(i))nnn(i),

(2c)

∂G(i)

∂t
+uuu ···∇∇∇G(i) = 0, (2d)

for i = 0,1, . . . ,N, where κ(i) is the local curvature of the ith

boundary, γ is the surface tension coefficient, p(0) = 0 is the

ambient air pressure and p(i) = pH , i = 1, . . . ,N, is the constant

pressure applied in the air channels. At x = L the speed of the

thread is controlled by the take-up roller and hence given by

u =Uout .

Assuming the thread is heated and cooled radiatively and is op-

tically thick for wavelengths that dominate the heat transfer,

so that heating/cooling occurs only at the external boundary of

the thread [11], the governing equation for the temperature θ is

given by

ρcp

(

∂θ

∂t
+uuu ···∇∇∇θ

)

= k∇2θ, (3a)

where cp and k are the specific heat and conductivity of the

fluid, respectively. On the external boundary we have

−k∇∇∇θ ···nnn(0) =
{

kbβ
(

θ4 −θ4
h(x)

)

, 0 ≤ x ≤ Lh,
kbβ

(

θ4 −θ4
a

)

, Lh < x ≤ L,
(3b)

and on the internal boundaries

−k∇∇∇θ ···nnn(i) = 0, i = 1, . . . ,N. (3c)

Here kb is the Stefan-Boltzmann constant, β is the absorptivity

of the surface, θa is the constant ambient temperature beyond

the heater, θh(x) is the temperature of the heater that, in gen-

eral, will be spatially dependent, and we have assumed negli-

gible heat transfer across internal cavities compared to the heat

transfer at the external boundary.

Asymptotic model reduction

For our illustrative problem (figure 1) we now characterise

the slenderness of the geometry by ε = χin/L, where we have

used the square root of the cross-sectional area at x = 0 as the

characteristic length scale in the cross-section and the neck-

down length as the axial length scale. To obtain a simplified

extensional-flow model we assume that ε ≪ 1 and define

(x,y,z) = L(x′,εy′,εz′), t =
L

Uin
t ′, p =

µhotUin

L
p′,

(u,v,w) =Uin(u
′,εv′,εw′), χ = χinχ′, Γ = χinΓ′,

κ = κ′/χin θ = θin +Θθ′, µ(θ) = µhotµ
′(θ′),

where Θ = (θhot −θin), θhot = maxx{θh(x)}, µhot = µ(θhot ),
and primes denote dimensionless variables. We also define the

Reynolds, Péclet and capillary numbers and a dimensionless ab-

sorptivity as

Re =
ρUinL

µhot

, Pe =
ρcpUinL

k
, Ca =

µhotUinχin

γL
,

HR =
βkbθ4

hotµhot

ρcpΘγ
,

respectively. Next we write our equations and boundary

conditions in terms of the scaled variables, dropping time-

dependence because our problem is steady, along with primes

for convenience. In the interests of space we here give just the

temperature equation,

ε2Pe

(

u
∂θ

∂x
+v

∂θ

∂y
+w

∂θ

∂z

)

= ε2 ∂2θ

∂x2
+

∂2θ

∂y2
+

∂2θ

∂z2
, (4a)

and the associated boundary condition on the external boundary,

−
(

ε2 ∂θ

∂x
n
(0)
x +∇∇∇⊥θ ·nnn(0)⊥

)

=
ε2PeHR

Ca
fR(θ,x), (4b)



noting that, for internal boundaries, the normal vector becomes

nnn
(i)
⊥ and the right-hand-side of (4b) simply becomes zero. Here

∇∇∇⊥ and nnn
(i)
⊥ denote the gradient and normal vectors in the y− z

plane, and

fR(θ,x) =

{

(

θ+ϑin(1−θ)
)4 −

(

ϑh(x)
)4
, 0 ≤ x ≤ ℓ,

(

θ+ϑin(1−θ)
)4 −ϑ4

a, ℓ < x ≤ 1,

where ϑin = θin/θhot , ϑa = θa/θhot , ϑh(x) = θh(x)/θhot , and

ℓ= Lh/L. We also expand all dependent variables in powers of

ε2, for example,

θ = θ0(x,y,z, t)+ ε2θ1(x,y,z, t)+ ε4θ2(x,y,z, t)+ . . . , (5)

and substitute these into our equations. Substituting (5) into the

temperature equation and boundary conditions, and taking the

leading order terms gives

∇2
⊥θ0 = 0,

∇∇∇⊥θ0 ···nnn(i)⊥ = 0, i = 0,1, . . . ,N,

which implies that θ0 = θ0(x), i.e. at leading order tempera-

ture is uniform in a cross-section and, therefore, so too is the

viscosity µ(θ0). Similarly it can be shown that u0 = u0(x).

Returning to (4a) and (4b) we now take O(ε2) terms to obtain

Peu0
∂θ0

∂x
=

∂2θ0

∂x2
+

∂2θ1

∂y2
+

∂2θ1

∂z2
, (6a)

−
(

∂θ0

∂x
n
(0)
x +∇∇∇⊥θ1 ···nnn(0)⊥

)

=
PeHR

Ca
fR(θ0,x). (6b)

Again we note that the boundary conditions on internal bound-

aries are similar to (6b) but with a zero right-hand-side. Inte-

grating (6a) over the cross-sectional area at axial position x and

using the divergence theorem and the boundary conditions gives

u0χ2
0

dθ0

dx
=

1

Pe

d

dx

(

χ2
0

dθ0

dx

)

− HRΓ
(0)
0

Ca
fR(θ0,x), (7)

where Γ
(0)
0 (x) is the leading-order length of the external bound-

ary of the cross-section at x.

Similar, though somewhat more complex, methods as used to

derive (7) are used to obtain an asymptotic ODE for the leading-

order axial flow u0(x),

−Reχ2
0u0

du0

dx
+

d

dx

(

3µ(θ0)χ
2
0

du0

dx

)

+
1

2Ca

dΓ0

dx
= 0, (8)

where Γ0(x) is the leading-order total length of the external and

internal boundaries of the cross-section at x. Since this is an

extensional-flow model we, not surprisingly, see the appearance

of the Trouton viscosity 3µ(θ0) in this equation. The continuity

equation yields

d

dx

(

u0χ2
0

)

= 0 ⇒ u0χ2
0 = 1, (9)

which may be used to simplify (7) and (8), the latter of which

may then be integrated. Noting that Re = O(10−8) and Pe =
O(10), we drop the inertial term in the flow equation and the

second-order term in the temperature equation. From this we

have

−6µ(θ0)
1

χ0

dχ0

dx
+

1

2Ca
Γ0 = 6T, (10a)

dθ0

dx
+

HRΓ
(0)
0

Ca
fR(θ0,x) = 0, (10b)

where 6T is the constant (dimensionless) tension in the fibre.

Transverse flow model

Our reduced equations include Γ0(x) and Γ
(0)
0 (x), the leading-

order lengths of all boundaries and the external boundary of the

cross-section at x, respectively. In the case of zero surface ten-

sion (γ = 0) the cross-section changes in scale with x but not in

shape so that Γ0(x) = χ0(x)Γ0(0), Γ
(0)
0 (x) = χ0(x)Γ

(0)
0 (0), and

we simply make these substitutions in (10). However, for γ 6= 0,

these boundary lengths must, in general, be found by solving for

the transverse components (v,w) of the fluid flow. The model for

this is derived from the leading-order terms of the scaled equa-

tions and dynamic boundary conditions for v and w, along with

the kinematic boundary condition. By writing the flow in the

cross-section as the sum of the solution in the absence of sur-

face tension (denoted by subscripts Z) and a component due to

surface tension (denoted by tildes),

p0 = pZ +
1

Caχ0
p̃, (v0,w0) = (vZ ,wZ)+

1

Caµ(θ0)
(ṽ, w̃),

scaling the transverse coordinates, boundary lengths and curva-

ture with χ0(x),

(y,z) = χ0(ỹ, z̃), Γ(i) = χ0Γ̃(i), κ(i) = κ̃(i)/χ0,

and employing the transformation from x to τ given by

dτ

dx
=

χ0

Caµ(θ0)
, τ = 0 at x = 0,

the flow in the cross-section due to surface tension is given by a

classical 2D free-boundary Stokes-flow problem driven by unit

surface tension in a domain of unit area, namely

ṽỹ + w̃z̃ = 0, (11a)

ṽỹỹ + ṽz̃z̃ = p̃ỹ, (11b)

w̃ỹỹ + w̃z̃z̃ = p̃z̃, (11c)

with boundary conditions on G(i)(τ, ỹ, z̃) = 0,

G
(i)
τ + ṽG

(i)
ỹ + w̃G

(i)
z̃ = 0, (11d)

(− p̃+2ṽỹ)G
(i)
ỹ +(ṽz̃ + w̃ỹ)G

(i)
z̃ =−(κ̃(i)+P

(i)χ0)G
(i)
ỹ ,

(11e)

G
(i)
ỹ (ṽz̃ + w̃ỹ)+G

(i)
z̃ (− p̃+2w̃z̃) =−(κ̃(i)+P

(i)χ0)G
(i)
z̃ ,

(11f)

where P (0) = 0 and P (i) = Ca pHL/(µhotUin), i = 1, . . . ,N.

Here subscripts denote differentiation with respect to the sub-

script variables. The solution of this transverse flow problem

yields both the scaled total boundary length Γ̃ and the scaled

outer boundary length Γ̃(0) at each τ, as well as the cross-

sectional geometry. We note that if the channels are not pres-

surised (pH = 0) the cross-sectional flow problem completely

decouples from the axial flow and temperature problems and

may be solved first but, otherwise, there is full coupling and all

must be solved simultaneously.

Extensional-flow model

To couple the cross-sectional flow problem with the tempera-

ture and axial flow equations it is convenient to write (10) in

terms of τ. Our final model is (dropping the subscript zeros) the



remarkably simple system of first-order ODEs

dχ

dτ
− 1

12
χΓ̃ =−T , T = T Ca, (12a)

dθ

dτ
=−HRµ(θ)Γ̃(0)

Ca
fR(θ,x), (12b)

dx

dτ
=

Caµ(θ)

χ
, (12c)

with the boundary conditions χ(0) = 1, χ(1) = 1/
√

D, θ(0) = 0

and x(0) = 0, along with the transverse flow problem. Note that

the boundary condition for χ at x = 1 is used to determine the

tension parameter T .

Solution for an axisymmetric cylinder

We here consider the case of drawing an axisymmetric tube.

Defining φ(τ) to be the radius of the hole over the radius of the

tube (i.e. the aspect ratio of the tube) at τ, and φin = φ(0), the

axisymmetric transverse flow problem yields [2]

dα

dτ
=







1

2
− P

8π

(

1−π2α4

α

)

χ, α < 1/
√

π,

0, α ≥ 1/
√

π,
(13)

with initial condition α(0) = αin, where

α(τ) =

√

1−φ

π(1+φ)
and αin =

√

1−φin

π(1+φin)
. (14)

Note that α = 1/
√

π corresponds to φ = 0, i.e. closure of the

hole, and typically we would choose the pressure parameter P

to prevent this, although not so large as to cause α(τ) to become

zero at any τ, corresponding to bursting of the tube (φ(τ) = 1).

For an annulus of unit area and aspect ratio φ it is readily shown

that

Γ̃(τ) =
2

α
and Γ̃(0)(τ) =

1

α(τ)
+πα(τ), (15)

which we substitute into (12a) and (12b).

Thus we have a system of four coupled ODEs for χ(τ), θ(τ),
x(τ) and α(τ) which are readily solved using, for example,

the “ode45” solver in Matlab. From these quantities we may

compute the (dimensionless) radius R(τ) and the aspect radius

φ(τ) of the tube. For specified heater temperature profile ϑh(x),
viscosity-temperature relation µ(θ), tension T and pressure P ,

solution is straight-forward but the desired cross-sectional area

at x = 1 (equivalently the draw ratio) may not be obtained. Thus

we use a root-finding procedure, such as ‘fzero’ in Matlab, to

determine the tension T that yields χ0(1) = 1/
√

D.

Figures 2–5 show solutions for an axisymmetric tube obtained

using four different channel pressurisations, as given in the cap-

tions. Also given in the captions are the values of T and φout =
φ|x=1, determined as part of the solution process. At x = 0 the

dimensional geometry is given by φin = 0.2 and χin = 8.7×
10−3 m, so that the external radius is 5×10−3 m. The incoming

velocity was set at Uin = 2.3× 10−5 m s−1 and the draw ratio

at D = 5000, yielding χout = χin/
√

D = 1.23× 10−4 m. The

dimensional temperature parameters were θin = 650 K, θa =
290 K, and θhot = 1000 K (yielding µhot = 3.78×104 Pa s), the

physical heater and neck-down lengths were Lh = 0.05 m and

L = 0.2 m, respectively, and the dimensional heater profile, with

temperature again in Kelvin, was specified as

θh(x) = 950+200
x

Lh

(

1− x

Lh

)

, (16)
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Figure 2: Solution for pH = 132 Pa; T = 20.97, the channel

closes so that φout = 0.

0 0.1 0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x xx

R, φR φ θ

Figure 3: Solution for pH = 220 Pa; T = 20.98, φ(x) decreases

monotonically to φout = 0.005.
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Figure 4: Solution for pH = 353 Pa; T = 21.02, φ(x) increases

at first but then decreases to φout = 0.098.
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Figure 5: Solution for pH = 529 Pa; T = 21.21, φout = 0.31 and

we have φout > φin.

with maximum value θhot at x = Lh/2. The tube was as-

sumed to be made of a glass having ρ = 3600kg m−3, cp =

557J kg−1K−1, k = 0.78W m−1K−1 and γ = 0.23 N/m, while

the absorptivity was set at β = 0.6 and the Stefan-Boltzmann

constant is kb = 5.67 × 10−8 W m−2K−4. The dimensional

viscosity-temperature relation was taken to be that for Schott

F2 glass, namely [14]

log10 µ =−2.314+
4065.2

θ−410.15
, (17)

where θ is measured in Kelvin and µ is given in Pa s. From

this data we find ε = 0.043, ℓ = 0.25, Pe = 11.98, Ca = 0.166,

HR = 7.97, ϑa = 0.29, ϑin = 0.65.

For pH = 132 Pa (Figure 2) we see that the pressure is not suffi-

cient to stop the channel from closing and φ= 0 in the final fibre.

For pH = 220 Pa (Figure 3), φ decreases monotonically but the

channel remains open. At the larger value pH = 353 Pa (Fig-

ure 4), φ initially increases but then decreases so that φout < φin.

Finally increasing the pressure still further to pH = 529 Pa (Fig-

ure 5) results in a fibre of aspect ratio larger than φin.

Complex cross-sectional geometries

With an appropriate method for solving the transverse-flow

model, the extensional-flow model may be solved for initial

cross-sections of arbitrary geometry; computational details and

some examples may be found in [1, 2, 15]. Here we show

in Figure 6, taken from [3], a comparison of the extensional-

flow model with experimental results and a 3D finite-element

simulation for an initial geometry with 6-holes and an exter-

nal diameter of 4 mm. The extensional-flow model captures the

cross-sectional fibre geometry extremely well and better than

the finite-element simulation. This provides excellent valida-

tion of the extensional-flow modelling approach for the drawing

of slender fibres.

Conclusions

We have described the derivation of an extensional-flow model

applicable to the drawing of fibres with, possibly, one or more

air channels running along the length of the fibre. Asymptotic

methods were used to obtain the model which is comprised of a

2D free-boundary Stokes-flow problem describing the flow and

geometry evolution in the cross-section, coupled 1D problems

for the axial flow and temperature which, to a good approxima-

tion, are uniform in a cross-section. As might be anticipated,

the axial-flow model features the Trouton or extensional vis-

cosity which is three times the shear viscosity. We considered

deformation of the geometry by stretching, surface tension and

pressurisation of air channels. In the absence of surface tension

and pressure the cross-sectional geometry reduces in size but

does not change in relative shape [5, 6].

For the drawing of an annular tube the model reduced to four

coupled ODEs which were solved using a Matlab ODE solver.

Solutions showed a competition between surface tension which

acts to close air channels and pressurisation of air channels

which acts to open them. Depending on the relative strengths

of these two forces the aspect ratio of the tube may decrease or

increase and, for a sufficiently large pressure, the aspect ratio

of the final fibre may be larger than that of the initial cross-

sectional geometry.

A comparison of the asymptotic extensional-flow model with

experiments and finite-element simulations, for the drawing of

a slender fibre with 6 air channels, demonstrated the remark-

able accuracy of the asymptotic model. Accuracy deteriorates

as the slenderness assumptions become less valid but the model

remains useful for fibre drawing where the initial diameter is of

the order of a centimetre or so. The model is also very efficient

with solution taking much less time than full Navier-Stokes sim-

ulations. Each of the solutions shown in this paper took less

than five seconds to generate using Matlab on a MacBook Pro

with a 2.9 GHz Intel Core i5 processor and 8GB of memory.

The methods illustrated in this paper are also applicable for

other extensional flow problems.
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