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Abstract

We summarize an evolving set of “big data” approaches to study
and model turbulent mixing with specific application to gas tur-
bine film cooling. New magnetic resonance imaging (MRI)
diagnostics allow rapid acquisition of 3D mean velocity and
scalar concentration data at millions of spatial points. Optimiza-
tion techniques were used with the large data sets to tune the
constants of existing scalar transport models and to show the
required characteristics of new models. Substantial improve-
ments in predictive accuracy can be achieved by introducing
an anistropic scalar diffusivity formulation and correcting an
error in the standard near-wall formulation of the scalar trans-
port model. The numerical experiments showed that the tur-
bulence model in the scalar transport equation is the main cul-
prit in the poor accuracy of modern Reynolds-Averaged Navier
Stokes (RANS) codes. Our latest modeling effort uses experi-
mentally validated, wall-resolved Large Eddy Simulation (LES)
results as training data for a machine learning algorithm that re-
places the scalar transport model in an existing computational
fluid dynamics code. Major reductions of the error in scalar
concentration have been documented using this approach.

Introduction

Turbulent mixing of scalar contaminants is a critical process in
both nature and technology. Scalar contaminants are quantities
that are transported by the flow without affecting the velocity
field. Examples include trace gases in airflows, dissolved chem-
icals that do not affect the fluid properties of the carrier liquid,
heat, and dispersed particles or droplets that are small enough to
follow the turbulent motions. In many cases such as fuel mix-
ing, volcanic ash dispersion, and thermal mixing in enclosures
turbulent scalar mixing is the dominant mechanism controlling
the behavior of the system.

Accurate prediction of turbulent scalar mixing is needed for sev-
eral problems ranging from engineering design to estimating
the impact of ongoing natural disasters. Modern eddy-resolving
simulations including both Direct Numerical Simulation (DNS)
and high-resolution Large Eddy Simulation (LES) can accu-
rately predict scalar transport and dispersion. Generally such
simulations are limited to relatively simple flow configurations
at moderate Reynolds number and require long run times on
large supercomputers. Therefore, a less computationally in-
tensive approach is required for highly complex configurations,
rapid response predictions such as needed during a natural dis-
aster, or for engineering optimization where many variations
of a design must be analyzed numerically. Coupled solutions
of the Reynolds-Averaged Navier Stokes (RANS) equations
for the velocity and pressure fields and the Reynolds-Averaged
Advection-Diffusion (RAAD) equation for a transported scalar
are used in such situations, and Reynolds-averaged codes are
expected to be the industrial workhorse for the foreseeable fu-
ture. The equation that is solved for the mean scalar field is
shown below in Eq. 1, where u′ic

′ is the unclosed term that de-
mands modeling and α is the molecular diffusivity.

ūi
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RANS/RAAD codes use semi-empirical models to represent the
effects of turbulence on the mean velocity, pressure, and scalar
concentration distributions. The turbulent scalar transport mod-
els are a particular weakness of this approach, and there has
been little effort to improve the models over the past 20 years
[25]. Most practical models are based on a simple gradient dif-
fusion hypothesis with a scalar turbulent diffusivity thus repre-
senting the turbulent scalar transport as Eq.2 below:

u′ic
′ =−αt(x,y,z)

∂c̄
∂xi

(2)

Here αt is the turbulent scalar diffusivity, which is a function of
position in the flow field. Usually, αt is assumed to be directly
proportional to the eddy viscosity (νt ) calculated as part of the
RANS momentum solver. This is called the Reynolds analogy
and represented as Eq. 3:

αt =
νt

Sct
(3)

The turbulent Schmidt number (Sct ), or equivalently the turbu-
lent Prandtl number for heat transport (Prt ), is taken as a con-
stant that may be tuned to match experimental data. Most often
a value of 0.85 is used because it best matches experimental
profiles in the log-layer of turbulent boundary layers over a flat
plate [11].

Our group and many others have shown that conventional scalar
transport models are not predictive. We have spent the past
eight years compiling extensive data sets for a wide range of
jet-in-crossflow configurations relevant to gas turbine film cool-
ing. We have found that well resolved RANS/RAAD simula-
tions using conventional gradient diffusion models can produce
very large errors in the mean scalar concentration and even the
relative performance between different jet configurations is not
consistently predicted. This is true even when the velocity field
computations are reasonably accurate, pointing the finger di-
rectly at the turbulent scalar transport models. More advanced
generalized gradient diffusion hypothesis models produce at
most minor improvements [22].

About ten years ago, our group began developing “big data” ap-
proaches to improve scalar transport modeling with a specific
focus on gas turbine cooling technology. Film cooling systems
consist of arrays of angled jets in crossflow and/or 3D slot jets
with the goal of forming a layer of relatively cool air over the
turbine blade surface to protect it from the extremely hot main-
stream gases. The effectiveness of this cooling method is con-
trolled by the rate of turbulent mixing of the coolant jets with
the mainstream.



We developed new Magnetic Resonance Imaging (MRI) pro-
tocols to provide detailed mean velocity measurements of the
three-component mean velocity and scalar concentration on
regular Cartesian grids throughout complex flow fields. These
techniques were applied to approximately 15 different geome-
tries each for trailing edge slot cooling and jet-in-crossflow con-
figurations. Each of these experiments included measurements
at 0.5 to 4 million spatial points, providing a very large database
to develop models. Our first big data approach to model de-
velopment involved using the MRI data in optimization pro-
cedures to find the best constants to use for various types of
models. One curious finding was that accurate prediction of
jet-in-crossflow configurations required a region of negative αt
immediately downstream of the jet exit, indicating that gradient
diffusion is an insufficient model for these flows. This led us
to conduct wall-resolved LES computations for the exact con-
figuration of several of our experiments. The experimentally-
validated simulations provide turbulence data that enriches the
experimental results. In particular, the turbulent scalar transport
is resolved throughout the flow field. We are using machine
learning techniques to develop new models that have demon-
strated substantial improvements in predictive accuracy relative
to conventional models and new methods to interpret machine
learning models are helping us to understand why existing mod-
els fail.

The goal of this paper is to show the evolution of our big data
approaches to scalar transport modeling with particular empha-
sis on film cooling configurations. Much of this work has been
reported in previous works by members of our lab, but new re-
sults are also reported. We make no attempt to review other
methods for 3D measurement of turbulent mixing or advanced
scalar transport model development in this short paper.

Magnetic Resonance Experiments

The research reported here relies on two MRI-based techniques
to measure the mean velocity and scalar concentration in tur-
bulent flows. Both techniques use water as the working fluid
and 3D printed plastic flow models. Experiments are conducted
in conventional 3.0 Tesla GE medical MRI scanners. Signal
is generated in an MRI scanner by magnetizing the protons in
hydrogen atoms bound in water. Thus, there is no question that
flow tracers follow the flow. Copper sulfate dissolved in the wa-
ter is used to enhance the signal strength for the velocity mea-
surement and as the passive scalar for the scalar concentration
measurements.

Magnetic Resonance Velocimetry (MRV) uses a phase contrast
measurement protocol [21, 8] to measure three components of
mean velocity. Typical flow velocities are around 0.5 m/s giving
Reynolds numbers of the order of 25,000 in a standard 50 mm
channel. A single acquisition of a full velocity field requires
around 5 minutes of scanning. This acquisition sequence is re-
peated 15 to 25 times to ensure well-converged statistics for
high turbulence mixing experiments. Velocity scans are inter-
spersed with reference “flow-off” scans bringing the total time
for a single full field experiment to approximately two to three
hours depending on the size of the test section. The velocity
measurement uncertainty is around 5% at 95% confidence, and
it is significantly lower over most of the measurement domain.
Uncertainties are highest near the walls of the channel and in
the neighborhood of features of the apparatus such as flanges
that perturb the magnetic fields.

Magnetic Resonance Concentration measurement (MRC) is
based on the linear relationship between copper sulfate concen-
tration and MRI signal strength [1]. It produces a 3D map of
scalar concentration on the same measurement grid as the MRV

data. The signal strength is also a function of the flow veloc-
ity, so the output must be calibrated in situ for each experiment.
Typically setup, calibration, and 20 to 30 repeated scans takes
around 12 hours in the scanner. Accurate measurements down
to about 2% of the inlet copper sulfate concentration are rou-
tine. Higher resolution measurements are achieved by feeding
high concentration copper sulfate at the jet inlet, in which case
the measurements near the jet inlet are not useful due to signal
non-linearity at high concentration. Our latest measurements
using this technique have achieved resolutions below 1% con-
centration.

A typical experiment studying a single pitched jet in crossflow
uses a 6 mm hydraulic diameter jet feeding into the crossflow
in a 50 mm square test section. Measurements cover a 240
mm length of the test section with spatial resolution of approx-
imately 0.6 mm in all three directions. The measurements also
include the flow in the jet supply plenum and inside the jet feed
hole. Thus a typical data set includes three components of ve-
locity and the scalar concentration at approximately 2.5 mil-
lion spatial points. Figure 1 shows 5 of the 356 measurement
planes of data from a simple case of a round hole pitched at 30◦

from horizontal with a blowing ratio (BR ≡ V jet/Vmain) of 2.0.
Within the data planes, the velocity and concentration data are
only shown for points where the concentration is greater than
20% of the inlet concentration. The figure shows the strong
coupling between the mean velocity and concentration fields.
The jet separates from the wall and a counter-rotating vortex
pair sweeps mainstream fluid under the jet reducing the cooling
effectiveness. Turbulent mixing acts to spread the jet laterally
and upward, but in this near jet region, the turbulence is un-
able to counteract the upward flow between the vortices. The
comprehensive and detailed nature of these data sets drove us
to consider big data approaches to analyze, interpret, and model
the results.

Figure 1: Slices showing mean secondary flows (arrows) and
concentration (contour) data from an MRI experiment. Data are
plotted only for locations where c̄ > 0.2 (delineated by the gray
isosurface). Only 1/4 of velocity vectors shown for clarity.

Optimization Studies

A typical MRI dataset contains mean velocity and concentration
data on millions of points of a 3D Cartesian grid. Such data can
be analyzed directly to understand physical phenomena in flows
where turbulent mixing is important. For example, Coletti et al.
[5] used MRI data to study the effect of mainstream pressure
gradients on a circular jet-in-crossflow geometry. With full field
measurements, the authors were able to analyze, at the same
time, the incoming boundary layer, the in-hole velocities, the



structure of the counter-rotating vortex pair, and the resulting
passive scalar concentration, which is nearly impossible to do
with other experimental techniques.

Another important objective of MRI studies is to obtain the
means to improve turbulence modeling, towards the goal of
making RANS simulations predictive. A problem is that mag-
netic resonance techniques cannot directly measure the quan-
tities that turbulence models aim to predict. For example, we
are able to measure the mean concentration field c̄(x,y,z), but
not the turbulent scalar flux u′ic

′(x,y,z), which is the term that
RANS models need to close in the Reynolds-averaged scalar
transport equation. To resolve this, our first approach involved
an optimization procedure.

Formally, in the case of turbulent scalar mixing, we postulate
that the turbulent scalar flux is a known function f of the mean
quantities available to RANS solvers, such as the mean velocity,
mean concentration, and other modeled quantities such as eddy
viscosity νt , as shown in Eq. 4. This function depends on one or
more parameters, denoted by θ. Then, we define an error met-
ric E, which is a non-negative number that represents how far
off the mean scalar concentration field predicted by the RANS
solver, c̄RANS(x,y,z), is from the MRC field data, c̄MRC(x,y,z),
shown in Eq. 5. Since the RANS solver uses f as a closure for
the turbulent scalar flux, the error E will be a function of the
parameters θ used. Finally, an optimization algorithm is used to
set the parameters θ such that the error E is minimized, shown
in Eq. 6. With this, we hope to produce a better closure f than
the standard model for turbulent scalar flux based on Sct = 0.85.

u′ic
′ = f (ū j, c̄, ...;θ) (4)

E(θ) = discrepancy between c̄RANS and c̄MRC (5)

θ = argmin(E) (6)

Trailing Edge Slot Film Cooling Studies

In this subsection, we discuss the results of applying the gen-
eral optimization framework described above to the problem of
predicting scalar concentration in trailing edge slot film cool-
ing. Figure 2(a) shows a gas turbine blade, with a typical slot
film cooling geometry presented in Fig. 2(b). Cooler fluid
is pumped out through the slots to protect this critical region;
when designing the cooling system, it is desirable to minimize
the coolant flow while providing sufficient protection against
thermal stresses.

Ling et al. [13] applied the optimization framework coupled
with MRC data in a simple way. As the function f , they picked
the typical gradient diffusion hypothesis with an isotropic dif-
fusivity and a uniform Sct , as shown in Eq. 7. The turbulent
Schmidt number was allowed to vary as the only free parameter
θ in this case. For the error metric, they interpolated simulation
results and the experimental data onto the same mesh and aver-
aged the absolute value of their difference over all the compu-
tational cells of a region of interest (ROI) as shown in Eq. 8 (N
is the number of cells in the region). To minimize E, they used
exhaustive search: different RANS simulations were performed
using different values of Sct , and the optimal value was chosen
as the one that minimized the error E. Note that this approach
is feasible only when there is a small number of parameters (1
or 2), because its computational cost grows exponentially with
the number of parameters that need to be set.

u′ic
′ =− νt

Sct

∂c̄
∂xi

(7)

Figure 2: Schematic showing film cooling schemes in a gas
turbine blade. (a) shows a picture of a turbine blade, taken
from http://www.me.umn.edu/labs/tcht/measurements/
what.html. (b) zooms onto the trailing edge, where slot film
cooling is used, adapted from [16]. (c) shows the center plane
of a single inclined jet-in-crossflow, which is used to model the
film cooling holes in the middle of the blade.

E(Sct) =
1
N ∑

ROI
|c̄RANS− c̄MRC| (8)

They used 4 different flow configurations (on which 4 separate
MRV/MRC experiments were run). They also explored two dif-
ferent regions of interest (and thus two different versions of the
error metric E): one that encompassed the full mixing region
of a single slot, and a second, smaller region, that only encom-
passed cells near the wall. The latter was chosen because it
is critical for film cooling applications that RANS simulations
be able to predict correct mean scalar distributions close to the
blade surface. In total, 8 different optimal values of Sct were
found. In general, optimal values of 0.85 (or a little lower in
some cases) were found when the region of interest consisted
of the full mixing region; but they were noticeably lower (as
low as 0.25) when the near-wall ROI was used. In all cases, the
improvement over the baseline model (Sct = 0.85) was mod-
est. This suggests that a fixed Sct model for the whole domain
is inappropriate, since the only way to improve results near the
wall is to worsen the results in the overall domain. Besides, it
suggests that different physics are governing the mixing near
the wall compared to the rest of the domain, in a way that the
Reynolds analogy is not able to capture.

These results then led Ling et al. [16] to propose a more general
improvement to the turbulent scalar mixing model. They real-
ized that, due to the different boundary conditions at the wall
for velocity u and scalar concentration c (no-slip versus adia-
batic), the turbulent transport of the two quantities (u′v′ and v′c′)
should behave differently as one asymptotically approaches the
wall [26]. This means that the Reynolds analogy breaks down:
αt , which governs v′c′, cannot be proportional to νt , which gov-
erns u′v′, close to the wall. Thus, they proposed removing the
Van Driest correction from the turbulent diffusivity to obtain
the correct asymptotic scaling, which is equivalent to setting a
corrected Schmidt number shown in Eq. 9.

Sccorrected
t = Sct(1− e−y+/70) (9)

y+ is the distance from a cell to the nearest solid surface in
wall coordinates, and 70 is a dimensionless constant chosen to
ensure that the proposed correction would affect not only the
viscous sublayer, but also the buffer layer and parts of the log
layer for these film cooling flows. In this formulation, Sct is
still a single constant, but the solver uses αt = νt/Sccorrected

t for
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the turbulent diffusivity field. Ling et al. [16] used the correc-
tion of Eq. 9 together with Sct = 0.45 across 15 different slot
film cooling cases for which they had MRI data. They obtained
significant improvement in most cases when predicting the near
wall concentration (see Fig. 3), and also obtained improvement
in overall error metric in 13 out of the 15 cases.

Figure 3: Plots adapted from Ling et al. [16] showing spanwise-
averaged adiabatic effectiveness (i.e., scalar concentration at the
wall) η versus streamwise coordinate x. Only 5 out of the 15
cases are shown for brevity.

Inclined Jet-in-Crossflow Uniform Models

Another important flow configuration for turbine blades is dis-
crete hole film cooling (as shown in Fig. 2(c)). The design re-
quirements are identical to the slot film cooling case (minimize
coolant flow while providing enough thermal protection). Ide-
ally, the flow coming out of the hole would remain close to the
bottom wall at all times, but due to mean secondary flows and
turbulent mixing, hot fluid from the mainstream is entrained and
touches the bottom wall. A passive scalar is used to model the
transport of heat because at such high speeds, buoyancy effects
and molecular transport are negligible. It is a well known fact
in the turbomachinery community that RANS simulations do
a poor job of predicting the temperature distribution, particu-
larly close to the blade surface (e.g. as shown, for example, by
Nikparto et al. [20], Coletti et al. [4], and Hoda and Acharya
[10]).

Figure 4: Baseline jet-in-crossflow geometry, taken from Ling
et al. [12]. The region of interest for evaluation of the error
metric is shown in blue, and D is the diameter of the circular
hole.

Ling et al. [12] introduced the optimization framework for dis-
crete hole film cooling using data from a single MRV/MRC
dataset in a baseline geometry, shown in Fig. 4. In this case,
a single cylindrical hole is inclined 30◦ with respect to the hori-
zontal, the blowing ratio is 1.0, and the Reynolds number based
on hole diameter is ReD = 2900. Their function f was again

based on the gradient diffusion hypothesis; instead of using the
Reynolds analogy with Sct as a parameter, they used a uni-
form turbulent diffusivity αt to parameterize f . They calcu-
lated their error metric E over the whole region where the jet
interacts with the mainstream, shown in blue in Fig. 4. They
explored different options for the error metric E, including the
L1 norm (average of |c̄RANS− c̄MRC|), the L2 norm (average of
(c̄RANS− c̄MRC)

2), and the Huber norm (a mixture between the
L1 and L2 norms). They concluded that the approach was ro-
bust to the specific form of E and decided to utilize the L1 norm
(shown in Eq. 8). Another interesting result from the same pa-
per [12] was obtained using an anisotropic diffusivity coupled
with the gradient diffusion hypothesis. They used two free pa-
rameters θ to describe f , a diffusivity in the wall-normal direc-
tion (αt,y), and a diffusivity in the spanwise direction (αt,z), as
shown in Eq. 10. Note that the diffusivity prescribed along the
streamwise direction barely affects the results, because trans-
port of c̄ in that direction is dominated by mean advection.

u′c′ =−
αt,y +αt,z

2
∂c̄
∂x

; v′c′ =−αt,y
∂c̄
∂y

; w′c′ =−αt,z
∂c̄
∂z

(10)

The optimization, again based on exhaustive search, showed
that allowing for two parameters instead of one caused a de-
crease in the resultant error function; and, we usually found that
the optimal wall-normal diffusivity is smaller than the optimal
spanwise diffusivity. This is probably due to the presence of
the wall, which suppresses eddies (and thus mixing) in the y di-
rection. It is important to note that, to obtain c̄RANS, only the
RAAD equation, Eq. 1, is solved; the mean velocity field from
the MRV experiment is used, so that any error will come from
the mixing model.

Inclined Jet-in-Crossflow Non-Uniform Models

Figure 5: Contours of the MRC data for the baseline jet-
in-crossflow case showing the four distinct regions. For the
anisotropic and non-uniform optimization, we set different val-
ues of diffusivity, independently, for each region. The left panel
shows a center plane and the right panel shows a streamwise
plane 2D downstream of the center of the hole.

The optimized anisotropic model for discrete hole film cool-
ing was clearly limited by the use of constant scalar diffusivity
values throughout the field. We extended this approach by al-
lowing the diffusivities to vary over space, and this paper is the
first report of that work. The full domain was split into four dis-
tinct partitions as shown in Fig. 5, and then we used optimiza-
tion to choose a different value of αt,y and αt,z for each parti-
tion. Partitions 1-3 cover the near injection region (where we
expect most of the interesting physics to happen), and partition
4 encompasses the rest of the domain. Under this formulation,
function f would be similar to the one shown in Eq. 10, except
that the diffusivities are now piece-wise constant. This function
f contains 8 optimizable parameters, so it is virtually impossi-
ble to perform optimization using exhaustive search, especially
because in the present case one evaluation of the error metric
requires solving a 3D partial differential equation. Instead, we



deployed a genetic optimization algorithm. The flowchart in
Fig. 6 contains brief descriptions of the different steps. The al-
gorithm attempts to mimic the biological concept of evolution.
We start with a random population of individuals (a set of pos-
sible parameters). In each iteration, the individuals reproduce
(two “parent” solutions create an “offspring” solution based on
their parameter values), random mutations are introduced, and
less fit individuals (defined by their error metric) are eliminated.
After enough iterations (called generations), the fittest individ-
ual emerges as the algorithm’s final answer. More details can
be found in Elbeltagi et al. [7].

Figure 6: Schematics describing our genetic algorithm.

We performed this non-uniform optimization across 5 different
jet-in-crossflow cases where MRI data were available: the base-
line case shown in Fig. 4, two cases where the the mainstream
pressure gradient is different (favorable and adverse pressure
gradients), and two where the incoming boundary layer thick-
ness is different (thin and thick boundary layers). For more in-
formation on these datasets, consult Ryan et al. [23]. As before,
the concentration c̄RANS was calculated using the experimental
mean velocity field and compared to c̄MRC through an error met-
ric E; in this case, the Huber norm was chosen due to it being
insensitive to small deviations (a good property due to experi-
mental uncertainty), but not dominated by outliers. However, as
shown by Ling et al. [12], the optimization results are robust to
different types of metrics, so we would have gotten very similar
results had the L1 norm of Eq. 8 been used instead.

Allowing for spatial variation of the diffusivities improved the
calculated mean concentration results significantly: it yielded
an average 18% reduction in overall error metric compared to
the best anisotropic uniform solution of Ling et al. [12]. The im-
provement in the critical regions (close to the wall and close to
injection) was even more striking: when evaluated only on par-
tition 1, the error metric reduced by an average of 32% across
the 5 cases. Fig. 7 shows mean concentration results from the
baseline jet-in-crossflow case; it indeed shows that the reduc-
tion in error metric translates to qualitative improvements in the
simulation results. An important characteristic of the mean con-
centration field for this case is the low values of concentration
right under the jet, past injection (where partition 1 is). This
happens because the coolant jet separates from the bottom wall
before reattaching, and the counter-rotating vortex pair acts to
bring mainstream flow under the jet. The experiments show that
the turbulent mixing in that region is not enough to counteract

those two effects, but in typical RANS simulations this mixing
is significantly overestimated in the region. As is clear from
the second row in Fig. 7, this causes an over-prediction of the
mean concentration at the wall, and also causes the concentra-
tion contour in the streamwise plane to lose its characteristic
kidney shape. The optimal non-uniform diffusivity ameliorates
these issues, while maintaining the good results far downstream
of injection. Especially due to the improvement near the wall,
such results are of great interest in predicting film cooling ef-
fectiveness.

Figure 7: Contour plots of mean concentration in the baseline
geometry. The left panels show center planes, and the right
panels show streamwise planes 2D downstream of the center
of the hole. Note that the optimal 4-partition results matches
the MRC data significantly better.

Across the 5 datasets in which this optimization was per-
formed, some patterns became evident in the optimal diffusiv-
ities yielded by the optimization algorithm. Most noteworthy
is the diffusivity in partition 1: in all cases, the optimal values
of αt,y were slightly negative, while αt,z was a moderately high
positive value. This shows that anisotropy is extremely impor-
tant in that region, and the only way to obtain the correct mean
concentration is to shut down any turbulent transport in the wall-
normal direction (or even add some counter-gradient transport
if numerically stable). Almost all other diffusivities were pos-
itive, and no patterns were apparent in diffusities in partitions
2 and 3. In partition 4, which represents most of the flow, the
optimal diffusivities were similar across the 5 cases, and signif-
icantly anisotropic (with wall-normal diffusivities being about
half of the spanwise diffusivities in all cases). Table 1 contains
the optimal diffusivities in all the 5 experimental cases.

Machine Learning

The 4-partition optimization work showed us that default mix-
ing models give poor mean concentration predictions even when
the correct mean velocity field is used. Furthermore, enhanc-
ing these mixing models can generate noticeable qualitative and
quantitative improvements on the resulting scalar concentration
for a jet-in-crossflow, as demonstrated by Fig. 7. However, if
the objective is to propose an alternative model that can im-
prove results on a general film cooling geometry, this approach
is insufficient. Ideally, we would desire a model that does not
require the user to select specific partitions and that contains a
set of parameters that can be tuned once and then applied to dif-
ferent geometries (rather than optimized for each specific case
given experimental data). That is where a machine learning ap-
proach becomes useful.

Machine learning (ML) consists of a broad class of algorithms
to process large amounts of data and extract patterns from the
data. In particular, we are interested in supervised learning al-
gorithms for regression, which try to build a complex and gen-
eralizable mapping which is then used to predict a real variable



Table 1: Optimal diffusivities in each of the 5 cases under the three optimization regimes. All reported diffusivities are non-dimensional,
normalized by V jetD. APG stands for ”Adverse Pressure Gradient”, FPG stands for ”Favorable Pressure Gradient”, and BL stands for
the ”Boundary Layer” cases.

of interest (or label) given other quantities that it should de-
pend on (or features). To build this mapping, one needs training
data, with several examples where the label and the features are
known. Linear regression is the simplest example of these types
of algorithms, and random forests (RF) and neural networks are
more complex, state-of-the-art ones. Bishop [2] presents a good
summary of the subject.

Machine learning applied for turbulence modeling is a new, but
growing field. Outside of our research group, active authors
in the field include Dr. Ling (e.g. [15]), Prof. Duraisamy at
University of Michigan (e.g. [6]), Prof. Sandberg at Univer-
sity of Melbourne (e.g. [24]), and Prof. Xiao at Virginia Tech
(e.g.[27]). All have slightly different approaches. The current
section is not meant to be a comprehensive review, but instead
introduce our group’s approaches, and summarize past results
and future directions.

The work of Milani et al. [19] introduced our machine learn-
ing approach to improve turbulent scalar modeling and showed
great promise. We fixed the isotropic gradient diffusion hypoth-
esis of Eq. 2 as the model form, but did not use the Reynolds
analogy. Instead, we used a machine learning algorithm to de-
termine a model for αt as a function of local variables available
to a RANS solver. These local variables (the features) were
based on the mean velocity gradient ∂ū j/∂xi, the mean scalar
gradient ∂c̄/∂xi, the eddy viscosity νt , and the distance to the
nearest wall d. They were properly non-dimensionalized based
on local turbulent quantities (k and ε, calculated by the k− ε

model), and the tensors were converted to Galilean invariant
bases according to the formulation proposed by Ling et al. [14].
A full list of the 19 features used can be found in Milani et al.
[19].

A random forest machine learning algorithm was used due to its
ease of implementation, insensitivity to tunable hyperpareme-
ters, and robustness to noise and outliers. For more details on
this specific algorithm, the reader is directed to Louppe’s com-
prehensive guide [17].

To train the random forest, we used high-fidelity simulation data
(either highly-resolved LES or DNS) of simple turbulent flows.
We did so because the training step of a supervised learning
model requires the “true” field for αt , and thus requires tur-
bulent statistics (which our MRI data cannot provide). How-
ever, we consider our simulations as means to enrich the MRI
datasets with turbulence information, because we go to great
lengths to ensure that the same problem is being simulated. We
tune the inlet conditions to produce correct velocity and tur-
bulence profiles and thoroughly validate the mean field data

against MRI results. Two highly-resolved LES simulations of
distinct jet-in-crossflow configurations are further described in
Bodart et al. [3] and Folkersma et al. [9].

When the machine learning model was trained on two of the
datasets (a skewed jet-in-crossflow and a wall-mounted cube
in crossflow) and applied to a third one, the baseline jet-in-
crossflow, it was able to significantly improve the scalar concen-
tration results, particularly close to the wall. Figure 8 is taken
from Milani et al. [19] and it shows the level of improvement
obtained for near-wall concentration.

Figure 8: Plot taken from Milani et al. [19] showing spanwise-
averaged adiabatic effectiveness (i.e., mean scalar concentration
at the wall) in the baseline jet-in-crossflow geometry. The LES
curve matches the experimental data for this case.

Another question that we sought to answer regards the inter-
pretability of physics-based ML models. High-performing ma-
chine learning algorithms, such as neural networks and random
forests, are notorious for making ”black-box” decisions: they
predict accurately when everything goes well, but it is difficult
to explain why it made a prediction. This might be accept-
able in image classification or ad targeting applications, but in
physical applications (where fundamental laws exist and experts
have physical intuition) it is not. So, Milani et al. [18] sought
to explain random forest predictions by proposing a spatially-
resolved metric, called the Pointwise Feature Usage (PFU), to
determine how important each feature is in predicting the tur-
bulent diffusivity. Their main conclusions is that most of the
decisions can be explained by the eddy viscosity νt and dis-



tance from the wall d; but, critical regions of the flow require
non-linear closures.

Our most recent work on scalar flux modeling showed that
the dramatic improvement provided by ML models cannot al-
ways be repeated across different datasets and different strate-
gies. The results shown in Fig. 8 give us the confidence that
ML methods are promising, but that remains an open research
path for us. Next steps to improve models include understand-
ing when the amount of training data is enough (and adding
more when it is not), and also deploying more complex mod-
els in conjunction with the machine learning approach (e.g. an
anisotropic diffusivity model). Furthermore, research into im-
proving models for the turbulent momentum flux is also on the
agenda for the lab. We have discovered in soon-to-be-published
work that simple modifications to the turbulent k− ε equations
coupled with ML techniques yield improved mean velocity pre-
dictions in separated turbulent flows. Using such techniques in
film cooling simulations together with the model of Milani et
al. [19] could further improve mean scalar predictions, since it
would add a more accurate velocity field to the more accurate
turbulent mixing model.

Conclusions

In the current paper, we presented an overview of the research
conducted in our lab in the past 10 years in the area of turbulent
mixing models. Thanks to the MRI experimental techniques,
we have datasets that are not easily available in the community:
3D mean data on complex internal geometries with reasonably
fast turnaround. The optimization and machine learning paths
show how we leveraged that experimental capability (which, at
this point, is as close to “big data” as experimental fluid me-
chanics gets) to study turbulent mixing models specifically for
RANS simulations.

Most of the results presented here have already been presented
in previous publications. However, the application of genetic
algorithms to optimize the 8 parameters of the anisotropic, 4-
partition model are being presented here for the first time. That
was an important stepping stone in the progression of this re-
search because it clearly showed that improving the mixing
model is key to obtaining better results in RANS simulations,
while at the same time pointing at glaring weaknesses of the
Reynolds analogy, the typical closure in commercial RANS
solvers today. The ongoing machine learning research, com-
bined with high-fidelity simulations to enrich the MRI data, al-
lows us to generalize those ideas and apply them to arbitrary
geometries with promising results.
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