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Abstract

Turbulence is omnipresent in Nature and technology, govern-
ing the transport of heat, mass, and momentum on multiple
scales. One of the paradigmatic turbulent flows is Rayleigh-
Bénard convection, i.e., a flow heated from below and cooled
from above. Here, the possible transition to the so-called ul-
timate regime, wherein both the bulk and the boundary layers
are turbulent, has been an outstanding issue, since the semi-
nal work by Kraichnan [Phys. Fluids 5, 1374 (1962)]. Yet,
when this transition takes place and how the local flow induces
it is not fully understood. By performing two-dimensional sim-
ulations of Rayleigh-Bénard turbulence covering six decades in
Rayleigh number Ra up to 1014 for Prandtl number Pr = 1, for
the first time in numerical simulations we find the transition to
the ultimate regime, namely at Ra∗ = 1013. We reveal how the
emission of thermal plumes enhances the global heat transport,
leading to a steeper increase of the Nusselt number than the
classical Malkus scaling Nu ∼ Ra1/3 [Proc. R. Soc. London
A 225, 196 (1954)]. Beyond the transition, the mean velocity
profiles are logarithmic throughout, indicating turbulent bound-
ary layers. In contrast, the temperature profiles are only locally
logarithmic, namely within the regions where plumes are emit-
ted, and where the local Nusselt number has an effective scaling
Nu ∼ Ra0.38, corresponding to the effective scaling in the ulti-
mate regime.

For real-world applications of wall-bounded turbulence, the un-
derlying surfaces are virtually always rough; yet characteriz-
ing and understanding the effects of wall roughness for turbu-
lence remains an elusive challenge. By combining extensive
experiments and numerical simulations, here, taking as 2nd ex-
ample the paradigmatic Taylor-Couette system (the closed flow
between two independently rotating coaxial cylinders), we un-
cover the mechanism that causes the considerable enhancement
of the overall transport properties by wall roughness. If only
one of the walls is rough, we reveal that the bulk velocity is
slaved to the rough side, due to the much stronger coupling to
that wall by the detaching flow structures. If both walls are
rough, the viscosity dependence is thoroughly eliminated and
we thus achieve what we call asymptotic ultimate turbulence,
i.e. the upper limit of transport, in which the scalings laws can
be extrapolated to arbitrarily large Reynolds numbers.

This Proceeding contribution summarizes and reproduces the
main results of our recent references [56, 57].

Introduction

Rayleigh-Bénard (RB) flow, in which the fluid is heated from
below and cooled from above, is a paradigmatic representation
of thermal convection, with many features that are of interest
in natural and engineering applications. Examples range from
astrophysical and geophysical flows to industrial thermal flows
[3, 26, 7]. When the temperature difference between the two
plates (expressed in dimensionless form as the Rayleigh number
Ra) is large enough, the system is expected to undergo a transi-
tion from the so-called “classical regime” of turbulence, where

the boundary layers (BLs) are of laminar type[47, 55, 54, 8],
to the so-called “ultimate regime”, where the BLs are of tur-
bulent type, as first predicted by Kraichnan [24] and later by
others [43, 11, 12, 13, 14]. In the classical regime, the Nus-
selt number Nu (dimensionless heat transfer) is known to effec-
tively scale as Raβ, with the effective scaling exponent β≤ 1/3
[11, 12, 45, 27, 37]. Beyond the transition to the ultimate
regime, the heat transport is expected to increase substantially,
reflected in an effective scaling exponent β > 1/3 [24, 3, 13].

Hitherto, the evidence for the transition to the ultimate regime
has only come from experimental measurements of Nu. In fact,
the community is debating at what Ra the transition starts and
even whether there is a transition at all. For example, in ref.
[30] it was observed that β first increases above 1/3 around
Ra≈ 1014 and then decreases back to 1/3 again for Ra≈ 1015.
Subsequently, Urban et al. [48] also reported β≈ 1/3 for Ra =
[1012,1015]. However, Chavanne et al. [5, 6] found that the ef-
fective scaling exponent β increases to 0.38 for Ra > 2×1011.
In the experiments mentioned above, low temperature Helium
was used as the working fluid and Prandtl number Pr changes
with increasing Ra. In contrast, using high pressure SF6 which
has roughly pressure independent Pr instead of Helium, a more
conclusive realization of ultimate regime was achieved by He et
al. [18, 17], who observed a similar exponent 0.38, but this ex-
ponent was found only to start at a much higher Ra ≈ 1014 (the
transition starts at Ra ≈ 1013). This observation is compatible
with the theoretical prediction [11, 12] for the onset the ulti-
mate regime. It is also consistent with the theoretical prediction
of Refs. [24, 13], according to which logarithmic temperature
and velocity BLs are necessary to obtain an effective scaling ex-
ponent β≈ 0.38 for that Ra. The apparent discrepancies among
various high Ra RB experiments have been attributed to many
factors. The change of Pr, the non-Boussinesq effect, the use of
constant temperature or constant heat flux condition, the finite
conductivity of the plates, and the sidewall effect can all play
different roles [3, 44].

Direct numerical simulations of 2D RB

Direct numerical simulations (DNS), which do not have these
unavoidable artefacts as occurring in experiments, can ideally
help to understand the transition to the ultimate regime, with
the strict accordance to the intended theoretic RB formulations.
Unfortunately, high Ra simulations in three dimensions (3D) are
prohibitively expensive [41, 46]. The highest Rayleigh num-
ber achieved in 3D RB simulations is 2× 1012 [44], which is
one order of magnitude short of the expected transitional Ra.
Two-dimensional (2D) RB simulations, though different from
3D ones in terms of integral quantities for small Pr [39, 51],
still capture the many essential features of 3D RB [51]. Conse-
quently, in recent years, 2D DNS has been widely used to test
theories, not only for normal RB [20, 53], but also for RB in
porous media [19]. Although also expensive at high Ra, now we
have the chance to push forward to Ra = 1014 using 2D simula-
tions. Another advantage of DNS as compared to experiment is
that velocity and temperature profiles can be easily measured,



to check whether they are logarithmic in the ultimate regime,
as expected from theory. Specifically, for the temperature, only
a few local experimental measurements were available in the
near-sidewall regions of RB cells, which showed logarithmic
profiles [1, 2]. Even worse, for velocity, there is almost no evi-
dence for the existence of a logarithmic BL, due to the experi-
mental challenges. For instance, in cylindrical cells with aspect
ratio Γ = O(1), the mean velocity profile cannot be easily quan-
tified because of the absence of a stable mean roll structure [24].
In situations where stable rolls do exist (e.g. narrow rectangu-
lar cells), the highest Ra available are still far below the critical
Ra at which logarithmic velocity BLs can manifest themselves
[47, 8].

As numerical simulations provide us with every detail of the
flow field which might be unavailable in experiments, they also
enable us to reveal the links between the global heat transport
and the local flow structures. A few attempts (both 2D and 3D)
have been made in the classical regime, in which logarithmic
temperature BLs were detected, by selectively sampling the re-
gions where the plumes are ejected to the bulk [1, 49]. However,
it is still unclear how these local logarithmic BLs contribute to
the attainment of the global heat transport enhancement during
the transition to the ultimate regime.

In ref. [56] we have observed a transition to the ultimate regime
in 2D, namely at Ra∗ = 1013, similar as in the 3D RB experi-
ments of Ref. [18]. The DNS of [56] have provided evidence
that the mean velocity profiles follow the log-law of the wall, in
analogy to other paradigmatic turbulent flows, e.g. pipe, chan-
nel, and boundary flows [35, 28, 42]. In Fig. 1, we show Nu(Ra)
compensated with Ra0.35, for the range Ra=[108,1014]. Up to
Ra = 1011 (blue symbol), the effective scaling is essentially the
same (β≈ 0.29) as has been already observed [23, 51, 50] in the
classical regime where the BLs are laminar [55, 54]. This trend
continues up to the transitional Rayleigh number Ra∗ = 1013

(green symbol). Beyond this, we witness the start of the transi-
tion to the ultimate regime, with a notably larger effective scal-
ing exponent β≈ 0.35, as evident from the plateau in the com-
pensated plot.

We next focus on the mean velocity field at the transitional
Ra. Remarkably, even after 500 dimensionless time units, the
flow domain still shows a stable mean roll structure, i.e. the
rolls are pinned with clearly demarcated plume ejecting and
impacting regions. The mean temperature and velocity fields
display horizontal symmetry, which enables us to average them
over a single LSR instead of the whole domain (as the veloc-
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Figure 1: Nu(Ra) plot compensated by Ra0.35. A clear transi-
tion can be seen at Ra = 1013, as evident from the plateau. The
data agree well with the previous results in the low Ra regime
[23]. The flow structures of the three colored data points (blue
for Ra = 1011, green for Ra = 1013, grey for Ra = 1014) are
displayed in Fig. 2 of ref. [56].
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Figure 2: Mean velocity profiles in wall units (u+ for velocity
and y+ for wall distance) at four Ra. The dashed lines show the
viscous sublayer behavior and the log-layer behavior. A log-
layer is seen for the velocity (with inverse slope κv = 0.4), but
not for the temperature.

ity averaged horizontally for the whole domain will be zero).
Figure 2 shows the temporally and spatially averaged veloc-
ity profiles, performed on one single LSR. We plot the pro-
files in dimensionless wall units, in terms of u+ and y+, where
u+ = 〈u〉x,t/uτ and y+ = zuτ/ν. Here uτ is the friction velocity
uτ =

√
ν∂z〈u〉x,t |z=0 [36]. Similar to channel, pipe, and bound-

ary layer flows, we can identify two distinct layers: a viscous
sub-layer where u+ = y+, followed by a logarithmic region,
where the velocity profile follows u+ = 1

κv
lny++Bv [36]. The

inverse slope gives κv = 0.4, which is remarkably close to the
Kármán constant in various 3D canonical wall-bounded turbu-
lent flows [28, 42]. However, the parameter Bv varies with Ra.
With increasing Ra, the logarithmic range grows in spatial ex-
tent, until at Ra∗ = 1013, it spans one decade in y+.

We next explain how the global heat transport scaling can still
undergo a transition to the ultimate regime, though only the
local temperature profile is logarithmic, not the globally aver-
aged one. We recall that by definition on the plate surface, Nu
=−〈∂zθ〉A. We compute the local Nu on the plate surface from
ejecting (Nue) and impacting (Nui) regions separately. These
are shown in Fig. 3, compensated by Ra1/3. Up to Ra∗, both
Nui and Nue follow a similar trend, with their respective local
scaling exponents βi and βe < 1/3. However, beyond Ra∗, Nui
and Nue diverge. The ejecting regions show an increased heat
transport, with βe = 0.38, which is precisely the ultimate scal-
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Figure 3: Local wall-heat-flux as a function of Ra, separately
for the plume ejecting region (Nue) and the plume impacting
region (Nui). At Ra∗ = 1013, Nue starts to undergo a transi-
tion to the ultimate regime with an effective scaling exponent
of 0.38, while Nui(Ra) has a much smaller effective scaling ex-
ponent of 0.28. The competition between the two parts finally
determines the effective global scaling exponent.



ing exponent predicted for Ra∼O(1014) with logarithmic BLs.
In contrast, the impacting regions have a much lower scaling
exponent βi = 0.28. This means that the flow is partially in the
ultimate regime and partially still in the classical regime.
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Figure 4: Global torque and friction factor scalings in both
DNS (symbols), and experiments (colored lines). a, The di-
mensionless torque as a function of Taylor number Ta. Four
cases are shown: (SS) both cylinders smooth; (SR) smooth in-
ner, rough outer; (RS) rough inner, smooth outer; and (RR) both
cylinders rough, with the exponent γ in the power law relation
Nuω ∼ Taγ shown for every case. The insets depict the compen-
sated plots Nu/Taγ, showing the quality of the scaling. b, The
friction factor c f as a function of the inner cylinder Reynolds
number Rei. The lines show the best fits of the Prandtl friction
law 1/

√
c f = alog10(Rei

√
c f )+b, with all prefactors shown in

the figures. For a and b, 6 ribs were used and the roughness
height is h = 0.075d. For the RR case, Rei independent friction
factors are revealed. c, The friction factor c f for RR cases with
6 ribs of different heights, ranging from 1.5% to 10% of the gap
width d.

Torque scaling in rough-wall Taylor-Couette flow

We address, both numerically and experimentally, the question
of how roughness modifies the global scaling relations. For
that, we choose the Taylor-Couette system [16], which is analo-
gous to the RB system [9]. Ribs of varying height and distance
represent the roughness. The results here are all taken from
ref. [57]. First, we focus on the cases of 6 ribs with identi-
cal heights h = 0.075d, both numerically and experimentally.

The global dimensionless torques, Nu∼ Taγ, for the four cases,
with increasing Ta and fixed outer cylinder, are shown in Fig.
4a. Combining EXPs and DNSs, the range of Taylor number
studied here extends over five decades. Similarly to what was
shown in various recent studies [18, 52, 32, 33, 4, 16], for the
SS case, an effective scaling of Nu ∼ Ta0.38±0.02 is observed
in the DNS, corresponding to the ultimate regime with loga-
rithmic corrections [24, 13]. A very similar scaling exponent
Nu ∼ Ta0.39±0.01 is found in EXPs, demonstrating the excel-
lent agreement between DNS and EXPs.

Dramatic enhancements of the torques are clearly observed with
the introduction of wall roughness, resulting in the transition of
Nu from O(102) to O(103). Specifically, when only a single
cylinder is rough, the logarithmic corrections reduce and the
scaling exponents marginally increase, implying that the scal-
ing is dominated by the single smooth wall. For the RR case,
the best power law fits give Nu ∼ Ta0.50±0.02, both for the nu-
merical and experimental data, suggesting that the logarithmic
corrections are thoroughly canceled. This state with the scaling
exponent 1/2 corresponds to the asymptotic ultimate turbulence
predicted by Kraichnan [24]. The compensated plots of insets
of Nu/Taγ show the robustness and the quality of the scalings.

When expressing the relation between the global transport prop-
erties and the driving force in terms of the Reynolds number
dependence of the friction factor c f , we obtain Fig. 4b. For
the SS case, the fitting parameters a and b yield a von Kármán
constant κ = 0.44±0.01, which is slightly larger than the stan-
dard value of 0.41 due to the curvature effect [21, 34, 15]. This
agrees very well with the previous measurements on TC with
smooth walls [25]. For the RR case, in both DNS and EXP,
for large enough driving the friction factor c f is found to be in-
dependent of Rei, but dependent on roughness height, namely
c f = 0.21 in the DNS and c f = 0.23 in the EXP for roughness
height h = 0.075d, thus showing good agreement also for the
rough cases. The results here are consistent with the asymptotic
ultimate regime scaling 1/2 for Nu and indicate that the Prandtl-
von Kármán log-law of the wall [38, 36] with wall roughness
can be independent of Rei [31, 38, 36, 22, 10], which has been
verified recently for Taylor-Couette flow [58]. For the RS and
SR cases, one boundary is rough and the other is smooth such
that the friction law lies in between RR and SS lines.

We further show the RR case with ribs of different heights, rang-
ing from 1.5% to 10% of the gap width d in Fig. 4c, display-
ing its similarity with the Nikuradse [31] and Moody [29] di-
agrams for pipe flow. It can be seen that once h > 0.05d and
Rei > 8.1×103 (Ta > 108), the asymptotic ultimate regime can
always be achieved in both DNS and EXP.
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