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Abstract

This paper investigates the unsteady flow features of two-
dimensional (2D) axisymmetric under-expanded supersonic im-
pinging jet with a nozzle pressure ratio (NPR) of 3.5 and a dis-
tance ratio (/D) of 2.5. A comparison between 2D axisym-
metric, three-dimensional (3D) Large Eddy Simulation (LES)
and experimental data is given. Good agreement can be seen
in mean profiles and shock location data. Utilizing spectral and
Proper Orthogonal Decomposition (POD) tools, two acoustic
contributions of the 2D axisymmetric simulation are observed
at the dominant tone frequency. The first one is responsible for
acoustic waves propagating to the far field and the other one
observed from the sides of the jet plume contributes to the feed-
back mechanism. Furthermore, the oscillation of the stand-off
shock may be one of the triggers of the feedback mechanism of
2D axisymmetric simulation, which is consistent with Hender-
son and Powell’s hypothesis[4].

Introduction

Under-expanded supersonic impinging jets which generate
highly unsteady flows have been investigated for over 70 years.
Marsh [7] found the discrete tones for subsonic impinging jets,
followed by Ho and Nosseir [5] who investigated moderate to
highly compressible flows. The well-known hydrodynamic-
acoustic feedback mechanism model of impinging tone was first
proposed by Powell [9], while this model only accounts for the
sound source on the plate in the wall jet region. Explanations
for the feedback mechanism are still the subject of debate due
to the complexity of the flow structure. Henderson and Pow-
ell [4] were still in doubt that the oscillation of the stand-off
shock is a part of the feedback loop. Henderson [3] suggested
the appearance of second local maximum pressure on the plate
as the sound source. However, Ho and Nosseir [5] hypothe-
sized that the discrete tone may be produced by the interaction
between vortical structures and the impinging plate. In recent
studies, Weightman et al. [13] conducted an experiment with
ultra-high-speed Schileren and found that a periodic transient
weak shock on the plate is responsible for the generation of
discrete tones. They stated that the mechanism produced by
this shocklet is independent of geometry. Wilke and Sesterhenn
[14] conducted a DNS at Reynolds number of 3300 and found
that the interaction between vortical structures and the stand-
off shock is responsible for the feedback mechanism. In regard
to 2D axisymmetric simulation, Zang et al.[15] who performed
both 2D axisymmetric and full 3D RANS simulations of the
under-expanded supersonic jet, found good agreement with ex-
periment in mean profiles and shock locations. Kim and Park
[6] utilized unsteady axisymmetric simulations with different
distance ratios and NPRs, and found that the staging behavior is
in agreement with experimental results. The aim of this paper
is first to investigate if important steady and unsteady features
of the under-expanded impinging jet can be reproduced by the
unsteady 2D axisymmetric simulation. In addition, a possible

cause of the feedback mechanism of the 2D axisymmetric sim-
ulation is suggested.

Methodology

Jet and numerical parameters

The configuration of current simulations is consistent with the
experimental studies by Risborg [10]. The nozzle is character-
ized by nozzle exit diameter (D), lip thickness 0.3D and con-
traction ratio 64. An impinging plate is placed normal to the
direction of nozzle exit at a distance of 2.5D. The nozzle pres-
sure ratio (NPR = po/parm) is 3.5, where pg is the stagnation
pressure and pg, is the ambient pressure. A non-reflective
pressure boundary condition is applied in the far field to avoid
pressure reflections from the outlet. The stagnation temperature
is the same as the ambient temperature of 293K. No-slip and
adiabatic conditions are applied to the velocity and the temper-
ature at both the nozzle wall and the impinging plate, respec-
tively. The nozzle exit Mach number (M, = U, /a,) is 1, where
U, is the nozzle exit velocity and a, is the sonic speed at noz-
zle exit. Mesh resolution of the current 3D LES is equivalent
with that of Dauptain ef al.[2] and the mesh for the 2D axisym-
metric simulation has been determined to be independent of the
grid. The current numerical method utilizes a density-based,
transient, central-upwind compressible solver. The temporal in-
tegration and the spatial discretization are implemented with the
second-order backward Euler and the second-order central dif-
ference schemes, respectively.

Governing equations

2D axisymmetric governing equations are described in cylindri-
cal form (x,z) as,

0A dB dC 1

Bt+az+ax+xD_O @
where
p
A — puZ
Pux
pe
_ ou, -
B— puzuz +p—"Tz
Puzux — Txz
L(pe+p)uz — u; Tz — txTox + g |
_ outs -
C= Puxuz — Tyz
Puxlly + p — Txx
L(pe+ p)ux — uz Tz — txTox + G|
pux
D= Puxu; — Tox
Puxy — Txx ’

(Pe+p)ux — t;Tox — Uy Ty + G



where u; is the stream-wise velocity; u, is the radial veloc-
ity; p is the density of the ideal gas; viscous stresses are:
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the flow temperature; Pr is the Prandtl number, which is chosen
to be 0.7 for current simulations. Considering perfect gas flow
condition, equations above are closed by p = pRT.

Current Large Eddy Simulation (LES) adopts the classic com-
pressible Smagorinsky model because it was successfully val-
idated by Chan et al. [1] and Dauptain et al. [2] in regard to
supersonic impinging jets. This model is based on eddy viscos-
ity and eddy diffusivity hypotheses. The eddy viscosity can be
written as,
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where Cj, is the model constant with value 0.094, A is the sub-
grid length scale and £°8° is the sub-grid scale kinetic energy.

Then the density-weighted sub-grid scale stress and heat flux
can be written as,
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where 3‘; is the filtered strain rate; §;; is the Kronecker delta; T
is the filtered temperature; k*¢° is the eddy diffusivity which is
defined as K*8° = u*8% /Pry.

The model assumes the local equilibrium between sub-grid
scale energy production and dissipation which is shown as,
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where C, is the constant for dissipation; : is the double inner
product. Then the final form of eddy viscosity model can be

written as,
18 =DB(CA)* /250,815, ©6)

where Smagorinsky model constant Cy = (Cg’ JCo)'/4.

Proper Orthogonal Decomposition (POD)

Proper Orthogonal Decomposition (POD) [12] is a method for
investigating dominant flow features. Since flow dynamics
and shock oscillations of under-expanded jets contain a large
amount of kinetic energy, it is expected that POD will be able
to capture the most energetic spatial distributions of the flow
field. In the current study, the POD is performed based on the
velocity fluctuation fields.

Results and Discussions

Validation of axisymmetric and 3D LES simulation

Figure 1 shows the comparison of time-averaged density gradi-
ent profiles. Figure 1(a) is the experimental shadowgraph from
Risborg[10], whilst Figure 1(b) shows current numerical simu-
lations in which the left half is axisymmetric data and the right
half is 3D LES data. It can be seen that both simulations can
capture the shear layer in the first half of the first shock cell and
are almost identical with each other. In addition, a Mach disk

and a stand-off shock can be observed from both simulations,
which are consistent with the experimental data. The main dif-
ference between axisymmetric and 3D data is reflected by the
slightly lower intensity of the density gradient of the axisym-
metric simulation. Similar trends can also be found in the mean
pressure and velocity profiles, which are not shown here due to
the page constraint.

Figure 1: Comparison between experimental and simulation
data, where (a) is shadowgraph from Risborg [10], whilst the
left half of (b) is the mean density gradient profile of 2D ax-
isymmetric data and the right half is 3D LES data.

Figure 2 shows the non-dimensionalized centerline mean den-
sity and Mach number, where 2D axisymmetric and 3D LES
data are plotted with the black and gray lines, respectively. The
overlaid diamond and circle in Figure 2 show the locations of
Mach disk and stand-oft shock. Shock locations are defined as
the place of the local maximum density gradient. It can be seen
that the mean non-dimensionalized density and Mach number
are overlapped with distance ratio less than 1 (i.e. z/D < 1).
Although differences between 2D and 3D data appear after-
ward, trends in axisymmetric and 3D data are similar in both
figures. In addition, comparison of Mach disk locations among
the current two simulations and another 3D LES with the same
jet parameters from Chan et al. [1] are shown in Table 1. It
can be seen that shock locations from these three simulations
are consistent with [10], while the current 3D LES simulation
with density-based solver behaves slightly better than that with
PISO algorithm [1].
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Figure 2: Comparison of mean normalized centerline density(a)
and Mach number (b) between 2D axisymmetric simulation and
3D LES data, in which —: 2D axisymmetric data; —: 3D
LES data. <) and o indicate the locations of Mach disk and stand-
off shock, respectively. The horizontal black dash line of (b)
indicates the choked Mach number.

Experiment [10] | 3D LES[1] | 3D LES (C) | 2D axi (C)

— 1.45 1.40 2.40

Table 1: Percentage errors of Mach disk location compared with
experimental data from Risborg [10]. *C’ indicates current sim-
ulations.

Spectral and POD analysis of 2D axisymmetric simulation

Figure 3 shows the near-field acoustic spectrum represented by
the sound pressure level (SPL) as a function of frequency. A
probe is placed at x/D = I, z/D = 0. The acoustic spectrum is
calculated by a sliding window with 50% overlap and Hanning



window function. It is observed that two discrete tones with fre-
quency f1 =36132Hz and f, =26367Hz exceed the broadband
noise at least 5dB, where f] is the dominant tone frequency and
f> is the secondary tone frequency. Figure 4 shows the am-
plitudes of pressure fluctuation fields for the two frequencies
to reveal the contributions of the acoustic feedback. In Figure
4(a), both shock locations can be observed. One acoustic con-
tribution can be approximately found along the sides of the jet
core region. In addition, a second local maximum pressure can
be observed at around x/D = 1.3, which is responsible for the
acoustic generation [3]. The location is also consistent with the
findings by Chan et al. [1]. Turning to Figure 4(b), two acoustic
contributions can be identified. The first one is responsible for
closing the feedback along the sides of the jet plume and the
other one located on the plate at around x/D = 2 is responsible
for acoustic waves mainly propagating to the far field.
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Figure 3: Acoustic spectra at probe location (x/D = 1, z/D = 0).
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Figure 4: Magnitudes of pressure fluctuation fields for the sec-
ondary tone frequency (a) and the dominant tone frequency (b)
ranging from /00 to 145 dB.
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Figure 5: Turbulent kinetic energy (TKE) per mode and cumu-
lative energy of the first 40 modes in percentage where —:
TKE/mode and —: TKE cumulation.

Figure 5 shows the distribution of turbulent kinetic energy
(TKE) of each mode and the accumulative TKE of the first
40 POD modes. It can be seen that the first 40 modes con-
tain around 86% TKE in total, where the first four modes con-
tain around 16.3%, 13.6%, 6.5% and 6.4% energy respectively.

Each of the rest modes contains less than 4% of total TKE and
thus will be omitted in the following analysis. To investigate
the relationship between these four modes, joint PDFs of the
normalized temporal coefficients with overlaid Lissajous lines
are shown in Figure 6. It is observed that the Lissajous line of
the first two modes is similar to a circle, which implies the first
two modes are at same frequency but with a 90 degree phase
shift, while the modal pair between the mode 1 and the mode
3 or the mode 4 are the higher harmonics of the first pair [8].
Figure 7 shows the first four POD modes in the radial (x) and
stream-wise (z) velocity fields respectively. It is anticipated that
the radial profiles of the first two modes in Figure 7(a) have a
similar appearance with a certain phase shift as those of mode
3 and mode 4 in Figure 7(b). This is consistent with the tem-
poral behavior of Figure 6. It can also be found that the first
four modes in the stream-wise velocity field enable the detec-
tion of the first shock location, while only the first two modes
can capture large oscillations of the stand-off shock. Thus, it is
interesting to investigate the relationship between the most en-
ergetic POD mode structures and the cause of the discrete tone
generation. Figure 8 shows the fast Fourier transform (FFT) of
the first four most energetic POD temporal coefficients. It can
be seen that the first two coefficients show that this dominant
frequency equals the dominant tonal frequency which was ob-
tained previously. This implies that the first two POD modes are
driven by this dominant frequency. To reiterate, only the first
two modes can capture the large oscillation of stand-oft shock.
Therefore, one of the possible triggers of the acoustic genera-
tion is the stand-off shock oscillation, which is consistent with
Henderson and Powell’s hypothesis [4]. It is necessary to note
that the magnitudes of the temporal coefficients of the last two
modes contain around one-fifth of the magnitude of the mode
1 coefficient, thus it is not definite to eliminate the relationship
between the acoustic contribution and the mode 3 or mode 4.
This uncertainty may be improved by implementing Dynamic
Mode Decomposition (DMD) [11] to study the dominant flow
structures by certain frequencies.

Conclusion

For the current study, results from 2D axisymmetric simulation
are shown to be comparable to the 3D LES and experimental
data when comparing mean profiles, shock locations, and cen-
terline normalized parameters. Specific to the current 2D ax-
isymmetric simulation, acoustic spectral and POD methodolo-
gies are used to investigate the unsteady behavior of the com-
plex flow. Results have shown that oscillations of the stand-off
shock may be one of the triggers for the acoustic generation,
which agrees with Henderson and Powell’s hypothesis [4].
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Figure 7: The first four POD modes based on the radial (x) ve-
locity field in (a) and (b), and stream-wise (z) velocity field in
(c) and (d). (a) and (c) represent the first two POD modes, whilst
(b) and (d) do the last two POD modes.
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Figure 8: Magnitudes of normalized POD coefficients as a func-

tion of frequency, in which —: ay, tay, - - - as, Tay.



