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Lift and Drag forces on a particle near a wall at low Reynolds numbers
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Abstract

Shear induced lift and drag forces on a small, neutrally buoyant,
rigid spherical particle, moving close to a wall (l/a = 1.2) are
examined. These wall induced forces are computed numerically
in a linear flow for low particle and shear Reynolds numbers
(Rep  1 & Re�  1). Mesh resolution and domain size depen-
dencies for low Reynolds numbers are examined. Decomposed
slip and shear hydrodynamic forces are analysed separately for a
fixed and moving particle. Numerical results are compared with
theoretically predicted forces for Re�,Rep ⌧ 1. The deviations
of lift forces from theoretical values demonstrate a strong shear
rate dependence near the wall for finite Re� values. Results pre-
sented will aid in developing a comprehensive wall-induced lift
model valid for a range of finite Reynolds numbers to analyze
the cross stream migration of particles in wall bounded flows.

Introduction

Hydrodynamic forces acting on a particle moving in a shear flow
close to a wall are significant in industrial and medical applica-
tions such as, cancer-detecting and cell sorting in microfluidics,
and in flow cytometery [1]. In the biological flow context, wall
induced forces contribute to the separation between platelets and
red blood cells that results in a Cell Free Layer (CFL) forming
adjacent to blood vessel walls. CFL development is crucial
for blood clot formation, as the presence of this layer increases
the platelet concentration near (damaged) vasculature walls, en-
hancing the coagulation rates [2].

Cross stream migration of particles in dilute suspension flow
is primarily caused by lift forces. Lift is an inertia induced
force that reduces to zero in the Stokes limit. In unbounded
flow, a neutrally buoyant particle can experience lift due to
slip (relative particle velocity), combined with shear or rota-
tion [3, 4]. Near a wall, the presence of the wall induces extra
flow disturbances, resulting in increased lift forces. Theoret-
ical models of wall induced lift have mainly been developed
via the the method of matched asymptotic expansion. These
analyses are restricted to very low inertia conditions (low par-
ticle Reynolds number Rep = uslipa/⌫ ⌧ 1 and shear Reynolds
number Re� = �a

2/⌫ ⌧ 1), where a,uslip,� and ⌫ are the par-
ticle radius, slip velocity, shear rate and fluid kinetic viscosity
respectively. The lift forces are computed by superimposing
the flow disturbance caused by ambient shear, relative motion,
rotation and the presence of the walls. Using this theoretical
method, Leighton & Acrivos analyzed the lift on a stationary
sphere in contact with the wall for a linear shear flow [5]. Kr-
ishnan & Leighton extended the analysis to predict the lift on a
sphere translating and rotating along a wall in a linear shear flow
[6]. The lift force variation with wall distance was analyzed by
Cherukat & McLaughlin, down to a minimum separation dis-
tance of 0.1a, using this analytical method [7]. Also the extrap-
olated results for a particle touching the wall agree well with the
previous studies. The lift force is usually non-dimensionalized
by Re�

2µ2/⇢ (where ⇢ is the fluid density), becoming indepen-
dent of shear for Re� ⌧ 1 and asymptoting to the value ⇠ 2 for

a non-rotating sphere touching the wall.

The presence of a wall also influences the drag force on a particle
under both Stokes and inertial conditions. In wall bounded flows
the highest drag is observed when the particle is in contact with
wall, and decays rapidly as the distance between the particle
and wall increases [8]. Accounting for the velocity field due to
both the presence of shear and a wall, Magnaudet presented an
additional Faxen type drag component for a sphere in the near
wall region [10]. This drag force increases the slip velocity of
neutrally buoyant particles near the wall, giving rise to a slip-
induced lift force at the wall that causes particles to migrate away
from walls. Goldman provides two simple expressions for the
drag force acting on a fixed particle in a linear shear flow and on
a particle moving in a quiescent fluid in the presence of a wall
under Stokes conditions [9]. Further, Magnaudet analyzed the
combined e�ect of slip and shear e�ects in wall-bounded flows,
enabling the authors to deduce the drag on a fixed particle [10].

In contrast to analytical expressions, most numerical studies
on wall bounded forces are focused on intermediate Reynolds
numbers Re�,Rep ⇠ 1� 100. These studies show a strong in-
fluence of shear near the wall on both the drag and lift forces
[11, 12]. However, neither these numerical results or the dis-
cussed theoretical models have been adequately validated for
small but finite inertial conditions Re  O(1), particularly in
wall-bounded flows.

Hence, in this study, we compute the hydrodynamic forces acting
on a non-rotating sphere in a linear flow when the shear Reynolds
number is O(1) using a finite-volume solver [13]. Two cases are
considered: In the first, the particle moves with the fluid such
that the slip velocity is zero (Rep = 0), and any lift forces are
due to wall and shear. In the second case, the e�ect of slip is
examined by holding the particle stationary (Rep , 0).

Method

Problem Specification

A neutrally buoyant rigid sphere of radius a is suspended in a
linear shear fluid flow with the origin of the Cartesian coordi-
nate system located at the center of the sphere (Figure 1). The
coordinate unit vectors are ex, ey and ez. The wall is placed at
distance l away from sphere center. The particle is constrained
to move in the x direction only, with particle velocity up, and is
restricted from rotating. Outer boundaries are located at large
distances L(� l) away from the sphere centre to minimize any
secondary boundary e�ects. For this study l is set to 1.2a to
obtain the lift and drag forces for a case where the sphere is al-
most touching the wall. A minimum value for L is numerically
established using domain size analysis.

To analyze the e�ect of slip on the hydrodynamic forces, the
two cases are considered. In the absence of relative motion
between the particle and the fluid, forces are generated due to
only wall and shear e�ects. To analyze this scenario the particle
slip velocity uslip is explicitly set to 0 in our first case. Note that



the slip is here defined as the particle velocity up relative to the
undisturbed fluid velocity uf at the particle center (y = 0) (Eq.1).
In our second case, the particle velocity is set to be 0 to find the
forces acting on a fixed particle. For both cases the undisturbed
fluid field is considered to be a linear shear flow with a positive
shear rate ( €�) (Eq.2) and a stationary wall at z = �l.

uslip = up � uf (y=0) (1)
uf = €�(y+ l)ex (2)
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Figure 1: A schematic diagram of a translating sphere of radius
a moving at velocity up in a wall-bounded linear shear flow

The fluid flow domain is resolved using the steady state dimen-
sional Navier Stokes (N-S) equations in a frame of reference that
moves with the particle. This results in a relative fluid velocity
u0 equal to u � up, where u is the local fluid velocity. Hence,
the modified steady state N-S equation is solved for u0 (Eq.3).
The fluid is assumed to be Newtonian with a dynamic viscosity
µ and density ⇢.

r · ⇢u0 = 0

r · (⇢u0u0+�) = 0
(3)

The total stress tensor (� = pI �⌧) is computed using the fluid
pressure (p) and viscous stress tensor (⌧ = �µ(ru0 +ru0T)).
The boundary conditions (Eq.4) used in the moving frame of
reference are:

u0 =
8>><
>>:

€�(y+ l)ex � up y = +1; x, z = ±1
�up y = �l

0 |r | = a

(4)

Here r is a radial displacement vector pointing from the sphere
centre to the particle surface.

The forces acting on the particle are evaluated by integrating the
total stress contributions around the particle surface A:

Fp = �
π
A
� · ndA (5)

Here n(= r̂) is the outward unit normal vector of the particle.
The drag (FD = Fp · ex) and lift (FL = Fp · ey) are defined as
the fluid forces acting on the sphere in +x and +y directions,
respectively.

The dimensionless lift and drag coe�cients based on the shear
are defined as:

CL =
FL

⇤

Re

2
�

CD =
FD

⇤

Re

2
�

(6)

where FL
⇤ and FD

⇤ are the forces non-dimensionalised by fluid
properties, defined as FL⇢/µ2 and FD⇢/µ2, respectively.

Mesh Development

A nonuniform body fitted structured mesh generated with gmsh

[14] is employed in the simulation (Figure 2). Np number of
mesh points on each curved side length of a cubed-sphere are
used to resolve the sphere shape. This results in 6(Np�1)2 cells
on the sphere surface. Inflation layers with (Nd �1) number of
layers and ↵ geometric progression ratio around the sphere are
used to capture gradients in velocity occurring near the particle
wall (Figure 2). Outer boundaries, except the bottom wall at
�l, are placed at a distance of L from the sphere centre in all
directions. To resolve the far field of the domain (excluding the
inflation layers), Nd number of points are used with � geometric
progression expanding towards the domain boundaries. The
mesh is refined along the wall in the spanwise and normal-to-
the-wall direction near the sphere. The total cell count in the
mesh is Nt.

Figure 2: The domain mesh for a particle located at l/a = 1.2.
Detailed frames show at z = 0

Results and Discussion

Domain and Mesh Dependency

The domain size was first tested to determine a suitable choice
of L such that the lift force is independent of this parameter. To
do this L was gradually increased, maintaining a fixed particle
radius and a constant number of total mesh points at Re� = 0.004
and Rep = 0. The corresponding results are given in Figure 3.

From the results a minimum of L = 50a was selected, captur-
ing the lift coe�cient with a ⇠ 0.86% di�erence compared to
the largest domain analysed, of L = 80a. The selected compu-
tational domain size is well within the acceptable range estab-
lished in previous numerical studies performed for unbounded
shear flows at Re ⇠ 0.1 [15, 16]. The boundary layer size around
a translating sphere in an unbounded environment is inversely
proportional to

p
Re, and hence requires a larger domain size

for Re ⌧ 1 [15]. However, for a bounded flow, the wall ef-
fect is more significant compared to outer boundary e�ects, and
hence it is reasonable to assume that the selected domain size
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Figure 3: E�ect of domain size (L/a) on lift coe�cient (CL) at
Re� = 0.004 and up = 0. The relative error of CL compared to
the maximum domain size is also presented.

is adequate for all Re� � 0.004 by considering the results given
above.

Mesh dependency was tested with simulations for a case with
the parameters Rep = 0, l = 1.2a and L = 50a. The number of
inflation layers around the sphere and the number of cells on the
sphere surface were adjusted by varying Nd and Np respectively.
Table 1 summarizes the drag and lift coe�cients found for dif-
ferent resolutions with both Re� = 0.1 and 0.01. The percentage
di�erence (✏%) relative to the finest mesh results is also given.

Re�
Grid Lift Drag

Np,Nd Nt CL ✏% CD ✏%

0.1

15 31556 1.667 2.48 -82.35 1.72
20 92000 1.639 0.77 -83.41 0.45
25 158976 1.632 0.32 -83.57 0.26
30 310500 1.627 - -83.79 -

0.01

15 31556 2.309 14.89 -833.60 1.65
20 92000 2.074 3.19 -843.99 0.43
25 158976 2.058 2.38 -845.51 0.25
30 310500 2.010 - -847.61 -

Table 1: E�ect of mesh resolution on lift and drag coe�cients

According to Table 1, the meshes with Np,Nd = 20,25 and 30
give a relative error between resolutions of less than 1% for
Re� = 0.1 and less than 3.2% for Re� = 0.01 for both lift and
drag. By considering the accuracy together with computational
cost we employed the mesh with Np,Nd = 25 and Nt = 158976
in the remainder of the study.

Forces at zero slip

The numerical drag forces for Re� = 1�0.001 at uslip = 0 (Rep =
0) are given in Figure 4a for a particle close to the wall (l =
1.2a). The results are compared with the Goldman [9] and the
Magnaudet [10] analytical expressions given for low Reynolds
numbers. The data shows the drag force is in the �x direction
and increases linearly with the shear Reynolds number. For the
selected Re� range, both the drag force and its coe�cient follow
a similar trend predicted by the theoretical models. Simulation
results agree well with the Goldman predicted drag forces, but
di�er by a constant multiplier relative to the Magnaudet results.

The lift force of a zero slip particle close to a wall is shown
in Figure 4b. When Re� < 0.01, the numerically computed
lift forces agree reasonably well with the previous analytical
solutions derived for low Reynolds numbers. CL is close to
the theoretical lift coe�cient of ⇠ 1.9806 for the smallest Re�

considered, as predicted by Cherukat & McLaughlin [7] when
the sphere is close to the wall for low Re� . However, as the Re�
increases, the numerical results deviate significantly from the
theoretical results, as inertial e�ects become more significant.
This suggests that the lift coe�cient (CL) at Rep = 0 requires
a shear based inertial correction that is not captured via the
analytical models.

10
-2

10
-1

10
0

Re

-10
4

-10
3

-10
2

-10
1

-10
0

C
D

-10
1

-10
0

-10
-1

-10
-2

F
*

Goldman et al. (1967) for (l=1.2a)
Magnaudet (2003) for (l=1.2a)
simulation for (l=1.2a)

(a)

10
-2

10
-1

10
0

Re

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

C
L

Krishnan & Leighton (1995) for (l=a)
Cherukat & McLaughlin (1994) for (l=1.2a)
simulation (l=1.2a)

(b)

Figure 4: E�ect of shear Reynolds number (Re�) on a) drag
coe�cient (CD) & dimensionless drag force (F⇤), and b) lift
coe�cient (CL) on a particle near the wall (l = 1.2a) for zero
slip condition (Rep = 0). Theoretical drag models - [9] & [10]
are evaluated at l = 1.2a and theoretical lift models - [6] & [7]
are evaluated at l = a and l = 1.2a respectively.

Forces at non-zero slip

A fixed particle in a sheared flow experiences a uslip of ��l

(Rep , 0). The numerically calculated drag force coe�cients
given in Figure 5a agree well with previous analytical results
given for low Reynolds number [9, 10]. The results show that
close to the wall (l = 1.2a), the net lateral force acting on the
particle is in the +x direction and increases linearly with shear
rate. The Goldman model is applicable for Stokes flow and
restricted to a fixed particles[9], while the Magnaudet model
is applicable for low inertial flows and is presented in a more
generalized form combining both shear and slip induced drag
components. However, within the region of Re� considered,
the numerical results agree well with the Goldman drag model
[9] compared to the Magnaudet model [10], the latter of which
again deviates by a constant multiplier.

The lift coe�cient for a fixed particle in a linear shear flow close
to the wall (l = 1.2a) is given in Figure 5b. For Re� ⌧ 1, the nu-
merically evaluated CL asymptotes to ⇠ 11.8 as Re� ! 0 while
the theoretical coe�cients are ⇠ 9.8 [7] for the same particle
position. The inconsistency between the numerical and analyti-



cal CL value for Re� ⌧ 0 needs further investigation. However,
the simulation results show that the lift force coe�cient varies
significantly with increasing shear Reynolds number, an e�ect
that is again not captured by the theoretical models.
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Figure 5: E�ect of shear Reynolds number (Re�) on a) drag
coe�cient (CD) & dimensionless drag force (F⇤), and b) lift
coe�cient (CL) on a particle near the wall (l = 1.2a) for a fixed
particle (Rep , 0). Theoretical drag models - [9] & [10] are
evaluated at l = 1.2a. Theoretical lift models - [6] is evaluated
at l = a and [7] is evaluated at l ⇠ a & l = 1.2a respectively.

Conclusions

The drag and lift forces on a particle close to a wall at finite shear
Reynolds numbers Re� (0.001�1) were numerically evaluated.
A domain size of L = 50a was chosen based on a sensitivity anal-
ysis. Numerical drag coe�cients largely follow the results of the
theoretical models derived for Re� ⌧ 1, even for shear Reynolds
numbers Re� ⇠ O(1), for both zero and non-zero slip conditions.
However, the lift coe�cients show a strong dependency on Re�
with increasing shear rate for both zero slip and non-zero slip
cases which is in contrast to the analytical models. Hence, this
study suggests that an appropriate shear based inertial correc-
tion is required to predict the lift on particles near a wall at finite
Reynolds numbers (Re� ⌧ 1). Assembling a suitable model to
capture particle migration near walls in microfluidic devices and
blood vessels is the topic of ongoing work.
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