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Abstract

We present a study on the flow around a circular cylinder
under controlled oscillation in steady current at a low Reynolds
number of 100. Three different angles of attack between
the direction of the motion and the far-field flow have been
investigated at different oscillation frequencies. The focus
of the present report is on the frequency responses of the
hydrodynamic forces and the modes of wake formation. It
shows that the inclined oscillation, where the motion intersect
the freestream at a 45◦, leads to substantial changes to
hydrodynamic forces from those of the in-line (0◦) or transverse
(90◦) oscillations. These changes are demonstrated to be related
to the flow synchronisation phenomenon between the vortex
shedding and cylinder motion, which is found in a wide range
of oscillation frequencies for the inclined oscillation.

Introduction

A circular cylinder subject to forced oscillation in steady
current exhibits a range of rich flow phenomena due to
the self-excited wake instability and the externally posed
perturbation [5, 6, 9, among others]. At certain combinations of
driving frequency ( fd) and amplitude (A) of oscillations, vortex
shedding may synchronise with cylinder oscillation, where the
flow is characterised by ordered and repeatable wake formation.
Such a feature can be used in active wake control and many
studies were devoted to the wake flows by moving a circular
cylinder either transversely or in-line to the direction of the
incoming flow [1, 3, 6, etc.].

Among these efforts, Williamson and Roshko [11] reported a
series of distinct flow regimes for a transversely oscillatory
cylinder, identifiable by the wake formations, including the
2S mode (two single vortices of opposite signs formed per
oscillation cycle), P+S mode (one pair and one single vortex
formed per cycle) and the 2P mode (two pairs of vortices
formed per cycle). On the other hand, Leontini, Lo Jacono
and Thompson [6] studied the flow around an in-line oscillatory
cylinder, where vortex shedding synchronises with the forced
oscillation at a rational ratio of fs/ fd = (N−1)/N, where fs is
the adjusted vortex shedding frequency as a result of structural
motion and N is an integer. Integer numbers as large as 8 were
observed [6], i.e., the P8 mode. Most recently, Tang et al. [9]
demonstrated that the mode ratio of fs/ fd can be any fractional
ratios p/q on the (A, fd)-plane, where p and q are integers.
It was also shown that the synchronised flow does prefer p/q
composed by small integers over large ones, such as that the
region occupied by mode 1/4 is much wider than that of 3/4. In
addition, mode ratios with even denominator appear in a larger
region than those with odd denominator, such that region of
mode 2/3 takes less space than 3/4.

However, these works focused on one-direction translation
motion. Less well understood is how the flow behaves around
a cylinder due to a two-component oscillation in both the
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Figure 1: Illustration of the present study at (Re,A∗) = (100, 0.4)
and the coordinate definition. Three attacking angles between
the sinusoidal oscillation direction and the uniform far-field
flow have been considered, i.e., α = 0◦ (in-line), 45◦ (inclined),
and 90◦ (transverse).

Sources CD CL−rms St
Present 1.345 0.232 0.165 97

Henderson (1995) [4] 1.35 - -
Singh and Mittal (2005) [8] 1.35 0.25 0.166

Tong et al. (2014) [10] 1.37 0.23 0.172

Table 1: Comparison of the statistics related to a circular
cylinder in steady flow at Re = 100.

transverse and in-line directions (figure 1), in which case
limited study has shown the wake does behave differently [7].
Two-component oscillations are frequently observed around
offshore structures subject to coexisting non-collinear flows or
two-degree-of-freedom vortex-induced vibration (VIV). This
work is motivated by this knowledge gap among an abundance
of published works on how the flow develops in the wake of an
oscillatory cylinder. The Reynolds number (Re) based on the
freestream velocity (U∞) and diameter of the cylinder (D) was
fixed at U∞D/ν = 100, where ν is the viscosity of the fluid. The
normalised amplitude (A∗ = A/D) of the forced oscillation was
chosen at 0.4. As illustrated in figure 1, three directions have
been considered, which are α = 0◦ (in-line), 45◦ (inclined),
and 90◦ (transverse). We report the wake flow features and
hydrodynamic loading on the cylinder here. The variety of
flow synchronisation modes, as discussed above, is shown to
be enriched for the case of the inclined oscillation.

Numerical method and model validation

The numerical study was carried out based on a
two-dimensional (2-D) model. The governing equations
for the flow are the incompressible Navier−Stokes (NS)
equations. Direct numerical simulations are carried out
using an open-source spectral/hp element code, Nektar++
[2]. The code employs high-order quadrilateral expansions
within each element using the modified Legendre basis.
A second-order implicit-explicit time-integration scheme
is chosen from the embedded NS solver, along with the
velocity correction splitting scheme and a continuous Galerkin
projection. The harmonic cylinder oscillation is implemented
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Figure 2: Time history of lift coefficient (black lines) at α = 45◦

and (a) λ∗= 4; (b) λ∗ = 6, (c) λ∗ = 8 and (d) λ∗ = 10, along with
the position of the cylinder in the x-direction (blue lines).

through a moving frame fixed on the cylinder and the
mesh used is similar to that reported in Tang et al. [9]. A
validation check was carried out for flow around a stationary
cylinder, as detailed in Table 1. The numerical results on
CD = Fx/(ρU2

∞D), CL−rms = rms[Fy/(ρU2
∞D)] and St compared

well with published data, which are the mean drag coefficient,
root-mean-square (rms) of lift coefficient and the Strouhal
number (St = fStD/U∞). Here, the vortex shedding frequency
for the stationary cylinder, fSt , is obtained by carrying out a
Fast Fourier Transform (FFT) on CL.

Result Discussions

For all three attacking angles, a range of oscillation frequencies
were investigated, which is presented as λ∗ ≡ U∞/( fdD),
similar to the definition of reduced velocity (Ur) in VIV. The
value of λ∗ represents the distance that freestream travels in
one cycle of cylinder oscillation, which was referred to as
wavelength [11]. Specifically, λ∗ ∈ [2,16] with an increment
of 0.2 was studied, in the aim to cover the range of Ur in VIV
with relatively large amplitude responses.

Synchronisation modes identification

Firstly, we present the time traces of lift coefficient and their
comparison with the x−direction displacement of the cylinder,
X(τ), in figure 2. The instantaneous flow fields for the
corresponding cases are given in figure 3, to illustrate the variety

(a) λ∗ = 4

(b) 6

(c) 8

(d) 10

(e) 12

Figure 3: Comparison of the instantaneous flow fields as
represented by the vorticity (ωz =5×U) at α = 45◦, with all
zones of synchronisation as given in figure 5. (a) λ∗ = 4 (zone
1©), (b) λ∗ = 6 (zone 2©), (c) λ∗ = 8 (zone 3©), (d) λ∗ = 10

(non-synchronisation) and (e) λ∗ = 12 (zone 4©).

of flow synchronisation modes at α = 45◦. Here, Td = 1/ fd and
the time scale τ is non-dimentionalised by D/U .

For λ∗ = 4 ∼ 8, the hydrodynamic forces and cylinder motion
display three different synchronisation features. (i) At λ∗ = 4,
CL(τ) oscillates four times in four cycles of oscillation, but
has different-sized peaks in each of these four cycles, despite
having the same frequency as the cylinder oscillation. (ii) These
peaks in CL(τ) change to be the same at λ∗ = 6, where there
appears to be a phase difference between the two signals, but
they perfectly synchornise to each other. The former is a 4/4
mode while the later is a 1/1 mode, based on to the classification
approach in Tang et al.[9]. (iii) When it moves to λ∗ = 8, CL(τ)
oscillates 3 times in two cycles of displacement, giving rise to a
3/2 mode. The last panel at λ∗ = 10 shows a non-synchornised
case, where CL(τ) shows no trend of repeating in the time
window, and in fact CL(τ) never precisely repeats itself for a
tremendous amount of time in the simulation. Therefore, for
the above cases, CL(τ) shows the same dominating frequency
as the displacement in cases of figure 2 (a) and (b), but has a
frequency of 1.5 times fd at (c).

Affected by displacement-induced inertia force, the amplitude
of the lift coefficient can be relatively large (figure 2a). In
addition, figure 2 (a) and (c) also show that CL−amplitude
can vary greatly from cycle to cycle of vortex shedding and
this is thought to be related to active adjustment of vortex
formation and shedding as the cylinder moves. It is seen that for
λ∗ = 4, CL(τ) oscillates roughly around the zero-mean value,
but at a non-zero-mean value for λ∗ = 6, which corresponds
to different wake formations, as given in figure 3 (a) and (b).
The non-zero-mean CL(τ) is apparently induced by the inclined
wake formation at λ∗ = 6, where the wake leans to y−direction
and thus CL(τ) is larger than 0. At λ∗ = 4 in figure 3 (a), the
vortices form a group of 3 (P+S) and convect downstream in
a staggered manner. The P-vortices are much larger than the
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Figure 4: Illustration on the multiple peaks in Fast Fourier
Transform (FFT) of the lift coefficient of an oscillatory cylinder
in steady flow at (λ∗,α) = (4,45◦). The maximum three peaks
are sequentially indicated by©, � and ♦ with sizes correlating
to the magnitudes.

S-vortex, and this is the reason for the different-sized peaks
in figure 2 (a). At λ∗ = 8 in figure 3 (c), the vortices form a
group of 4 (2P) and the four vortices are again not uniform in
size. Figure 3 gives five distinctive flow fields, representing the
zones that will be shown later in figure 5. For these relatively
simple cases of synchronisation, the wake is comparable to the
2S (b), P+S (a) and 2P (c) modes as discussed earlier, but the
wake formation can be so rich that the classification based on
fL/ fd = p/q modes [9] shall be used for the inclined cylinder
oscillation.

Flow synchronisation

The flow synchronisation is investigated by analysing the phase
diagram of forces, as well as the frequency component of the
lift coefficient, as given in figure 4. A synchronised case is
characterised by multiple but repeatable peaks over fL/ fd ∈
(0,1),(1,2) · · ·. In particular for this case, the largest peak is
found at fL/ fd = 1, attributing to the external perturbation,
while the second largest is at 0.5, which is due to vortex
shedding. The peak at 0.25 is related to the change in force
magnitude from every second cycle, as seen in figure 2. All
the other peaks are just the combination of these three peaks,
or the super-harmonic of 1/4 in figure 4 for modes 4/4. This is
because in the synchronised case, the ratio of fL/ fd is a rational
ratio p/q, and all peaks are just N/q.

Figure 5 picks the leading three peaks as illustrated in figure 4
and compares these peaks at three angles of attack. It reveals
information related to the flow field, including the relative
energy of the peaks, the frequency of vortex shedding, the peak
locations as a function of λ∗, as well as zones of synchronisation
of the flow field with cylinder oscillation at different attacking
angles and λ∗. The frequency ratio of fL/ fd does not change
with varying λ∗ in the zone of synchronisation. For the peaks,
the zero attack in figure 5(a) sees no leading peaks located
at fL/ fd = 1 at small λ∗ (<5), which is because the in-line
oscillation minimises the effect of cylinder motion to vortex
formation as compared to α = 45◦ and 90◦ at similar λ∗. The
flow synchronization at low λ∗ at α =0◦ occurs in a manner
that a pair of vortices shed in every two cycles of oscillation,
thus fs/ fd = 1/2. This similar mode is observed but in an
adjusted form at α = 45◦, such as in the modes of 4/4, and
totally disappears at α = 90◦. In general, a more rich range of
peaks appears at α = 0◦ and 45◦ than that at 90◦, possibly due to
the transverse oscillation inducing a more direct impact on the
vortex formation at the two shear layers around the cylinder.

For flow synchronisation, α = 45◦ experiences four distinct
ranges of synchronisation, where respectively, the vortex
shedding frequency locks to 0.5 fd , fd , 1.5 fd and 2 fd . With
the change of α, only the first three are seen at α = 0◦ and only
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Figure 5: Comparison on the three leading peaks ( fLps) in FFT
of the lift coefficient as a function of λ∗ at (a) α = 0◦ (in-line),
(b) 45◦ (inclined) and (c) 90◦ (transverse). The circled numbers
indicate the zone of synchronisation, where 1©, 2©, 3© and
4©, respectively, show zone of wake synchronisation to 0.5 fd ,
fd , 1.5 fd and 2 fd . The purple-dashed horizontal line is the
driving frequency of cylinder oscillation, which dominated the
peaks at low λ∗ (except α = 0◦). The green-dashed diagonal
line represents the natural vortex shedding frequency without
cylinder oscillation (= fSt/ fd), which dominates the peak at
large λ∗. The primary synchronisation zone is zone 1© at α =
0◦, but zone 2© at α = 90◦. The way these peaks were selected is
demonstrated in figure 4 and the sizes are scaled for all angles.
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Figure 6: Comparison of the mean drag and lift coefficients as a
function of λ∗ at three attacking angles at (Re,A∗) = (100,0.4).
CD for the non-oscillatory cylinder in otherwise the same flow
condition is given as a dashed line, while CL for the stationary
cylinder is 0.

one at α = 90◦ (to fd). This feature indicates that by allowing
vibrations in both transverse and in-line directions, the wake
may show more types of synchronised flows. Another notable
feature is the size of the peaks at the primary synchronisation
zone to fd (zone 2©), where circles at α = 90◦ appear to be
much smaller than those at 0◦ and 45◦, which is noteworthy
considering the inertia force induced by cylinder displacement
at 90◦ should be the largest among the three (which is indeed
the case at λ∗ = 2). By comparison, circles appear to be much
larger at α = 0◦ in zone 2©. For non-synchronised cases, figure
5 shows a much richer range of peaks at α = 0◦ and 45◦ than
that at 90◦. With λ∗ increasing to 10 and beyond, only very few
cases can be classified as synchronisation.

The angles of attack and the types of synchronisation affect
the force statistics greatly, as demonstrated in figure 6. For
most of the cases at α = 45◦, CL is non-zero, as compared
to that of mostly zero for the transverse-oscillation condition.
In agreement with published study [9], CL can be non-zero
for the in-line oscillation condition, but the inclined oscillation
enhances the wake inclination to an extent that the magnitude
of CL can be larger than 0.5 at certain λ∗ (such as at around
λ∗ = 3). CD (which is not affected by inertia force at α =
90◦) also shows ups and downs with varying λ∗ at all angles
of attack and in particular, CD also varies greatly with α. For
instance, the largest CD is found at α = 90◦ for λ∗ = 2.0 ∼ 3.0,
at α = 0◦ for λ∗ = 3.4 ∼ 5.0, and at α = 45◦ for λ∗ = 6.0 ∼
7.2. The variety in changes in the loading are related to the
synchronisation between wake flows and cylinder oscillation.
This is because as the separated flow becomes resonant, it is
associated with the coalescence of small vortices and thus a
more organised wake flow, which leads to an enhanced shear
layer and a stronger entrainment wake [12]. Therefore, flow
synchronisation generally induces relatively large forces.

Conclusions

The flow around a circular cylinder undergoing controlled
oscillation in a steady current at three angles of attack has been
studied. It shows that the inclined oscillation, where the motion
intersect the freestream at a 45◦, leads to substantial changes
to the force features from those of the in-line (0◦) or transverse
(90◦) oscillations. These changes are shown to be related to
the flow synchronisation phenomenon between vortex shedding
and the cylinder motion, which is found in a wider range of
oscillation frequencies for the inclined oscillation.

Acknowledgements

This work was supported by resources provided by the Pawsey
Supercomputing Centre.

References

[1] Bishop, R. and Hassan, A. (1964). The lift and drag forces
on a circular cylinder oscillating in a flowing fluid, Proc.
R. Soc. A, 277, 51–75.

[2] Cantwell, C., Moxey, D., Comerford, A., Bolis, A.,
Rocco, G., Mengaldo, G., De Grazia, D., Yakovlev,
S., Lombard, J.-E. and Ekelschot, D. (2015). Nektar++:
An open-source spectral/hp element framework, Comput.
Phys. Commun., 192, 205–219.

[3] Carberry, J., Sheridan, J. and Rockwell, D. (2005).
Controlled oscillations of a cylinder: forces and wake
modes, J. Fluid Mech., 538, 31–69.

[4] Henderson, R. D. (1995). Details of the drag curve near
the onset of vortex shedding, Phys. Fluids, 7, 2102–2104.

[5] Konstantinidis, E. and Balabani, S. (2007). Symmetric
vortex shedding in the near wake of a circular cylinder
due to streamwise perturbations, J. Fluids Struct., 23,
1047–1063.

[6] Leontini, J. S., Lo Jacono, D. and Thompson, M.
C. (2013). Wake states and frequency selection of a
streamwise oscillating cylinder, J. Fluid Mech., 730,
162–192.

[7] Ongoren, A. Rockwell, D. (1988). Flow structure from an
oscillating cylinder Part 1. Mechanisms of phase shift and
recovery in the near wake, J. Fluid Mech., 191, 197–223.

[8] Singh, S. and Mittal, S. (2005). Vortex-induced
oscillations at low Reynolds numbers: hysteresis and
vortex-shedding modes, J. Fluids Struct., 20, 1085–1104.

[9] Tang, G., Cheng, L., Tong, F., Lu, L. and Zhao, M. (2017).
Modes of synchronisation in the wake of a streamwise
oscillatory cylinder, J. Fluid Mech., 832, 146–169.

[10] Tong, F., Cheng, L., Zhao, M., Zhou, T. and Chen,
X.-B. (2014). The vortex shedding around four circular
cylinders in an in-line square configuration, Phys. Fluids,
26, 024112.

[11] Williamson, C. and Roshko, A. (1988). Vortex formation
in the wake of an oscillating cylinder, J. Fluids Struct., 2,
355–381.

[12] Wu, J.-Z., Lu, X.-Y., Denny, A. G., Fan, M. and Wu,
J.-M. (1998). Post-stall flow control on an airfoil by local
unsteady forcing, J. Fluid Mech., 371, 21–58.


