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Abstract

Entrainment from the ambient into the crown region of forced
turbulent fountains is examined using numerical simulation for
Reynolds numbers 2000 ≤ Re ≤ 3500 and Froude numbers 5
≤ Fr ≤ 24, where Re and Fr are based on the fountain source
properties. The fountain flow consists of three regions, the inner
upflow, outer downflow, and the crown where the inner upflow
transitions to the outer downflow. The results indicate that the
crown region entrainment volume flux is relatively insensitive to
the Reynolds number in the fully turbulent fountain regime (Re
≥ 2000), while it has a linear relation with the Froude number
for the cases considered, similar to that of the mean penetration
height for forced fountains (Fr ≥ 3). Linear regression of the
results for the crown entrainment give the relation as QE /Qo=
0.1721 Fr + 0.705, where QE is the entrainment and Qo is the
fountain source volume flux.

Introduction

A fountain occurs when a dense fluid is projected upward into a
less dense ambient. The rise of the dense jet fluid is opposed by
buoyancy, and further limited by the entrainment of fluid from
the ambient. The fountain structure consists of a core of ris-
ing fluid and a surrounding falling annular plume, with a crown
region at the top where the rising fluid transitions to the de-
scending annular plume. In the crown region, the inner upflow
fluid which rises from the source, becomes stagnant at the max-
imum height, entrains surrounding ambient fluid and leaves the
crown region to descend back to the source level as an outer
downflow, as illustrated by the schematic in figure 1. Fountains
occur widely in environmental and industrial settings. Volcanic
eruptions, atmospheric convection, building ventilation and re-
fueling fuel tanks are all examples where turbulent fountains
occur and strongly influence the overall behaviour [2, 11, 3, 8].

Fountains may be classified by two non-dimensional numbers,
the Reynolds number (Re) and the Froude number (Fr), defined
below. For Reynolds numbers greater than 2000, the fountain is
fully turbulent [17] and for Froude numbers greater than 3, the
fountain is classified as forced [9]. Several studies have iden-
tified scaling relations for the mean fountain penetration height
over a range of Froude numbers [2, 15, 9, 12, 7, 18, 4, 17]. For
the forced fountain regime, the flow has a linear scaling Zm/Ro
= CFr, where C is a constant, Zm is the mean fountain penetra-
tion height and Ro is the source radius. This linear scaling has
been validated by several laboratory experiments and shown to
be valid for 3 ≤ Fr ≤ 300, although the constant C has been
observed to vary between 2.1 and 3.06 [2, 15, 12, 7, 17].

Theoretical models for the fountain rise height have been devel-
oped by extending plume and jet models with the assumption
that the lateral entrainment, that is the entrainment from the am-
bient into the outer downflow, and from the outer downflow into
the inner upflow, will obey standard jet/plume like entrainment
relations. These models were first applied to negatively buoy-
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Figure 1: Schematic of a forced turbulent fountain.

ant starting jets, predicting a linear Froude number relation for
the initial rise height [1, 13, 9]. This approach was later ex-
tended to predict the rise height of fully developed fountains
by including the effect of the outer downflow, with similar en-
trainment assumptions [4], with the results validated against the
experimental data of [12]. Detailed numerical results for the
lateral entrainment were obtained by [16], showing that simi-
larity based entrainment relations did not accurately predict the
behaviour, and suggesting that the self-similarity assumptions
embedded in the theoretical models were open to question.

Experimental measurements of total entrainment into turbulent
forced fountains, that is the lateral entrainment plus the crown
entrainment, found that the total entrainment QE/Qo= 0.71Fr
[6], with Qo the fountain source volume flux. Although no pre-
vious investigations have been carried out for the entrainment
into the crown region only, an investigation of the similar flow
of a negatively buoyant jet penetrating a density interface found
the total entrainment for the high Froude number case to be
QE/Qo= 0.42Fr, with approximately 20 % of the total entrain-
ment occurring in the crown region [14].

The fountain rise height and overall behaviour is strongly de-
pendent on the entrainment of the ambient fluid into the foun-
tain, and the entrainment and mixing of the outer and inner
flows. All the theoretical models include an estimate of the en-
trainment, typically based on jet and plume type entrainment
laws. Despite this, there has been relatively little direct mea-
surement of the entrainment, either experimentally or via direct
numerical simulation, with no direct measurement or calcula-
tion of entrainment for the crown region. In this study we will
conduct a numerical investigation of forced fountain flow, quan-
tifying the entrainment into the crown region and establishing a
Froude number based scaling relation.



Numerical Method

Results are obtained by solving the Navier-Stockes equations
for incompressible flow, with the Oberbeck-Boussinesq approx-
imation for buoyancy. The dimensionless continuity, momen-
tum, and scalar transport equations are:
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where Re = VoRo/ν is the Reynolds number, Pr = ν/α is the
Prandtl number, and Fr = Vo/(goR0)

0.5 is the Froude number,
all based on the source properties; velocity Vo, temperature θo,
radius Ro, kinematic viscosity ν, thermal diffusivity α and re-
duced gravity go=g (ρo-ρ∞)/ρ∞, with ρ the density. The .o and
.∞ subscripts indicate properties at the fountain source and in
the ambient fluid, respectively. The dimensional velocity (Ui),
temperature (θ), pressure (P), time (T) and length (Xi) are nor-
malised as ui = Ui/Vo, φ = (θ - θ∞)/(θo - θ∞), p = P/(ρV 2

o ), t =
T/(RoVo) and xi = Xi/Ro. The .i subscript for ui represents the
three components of velocity u1 = u, u2 = v, u3 = w and for xi
represents the three dimensions in space x1 = x, x2 = y, x3 = z.

The finite-volume method, implemented on a non-staggered
Cartesian grid, is used to discretise the governing equations,
with the ULTRA-QUICK limited scheme [5], used for the ad-
vection terms and all other spatial derivatives second-order. The
transport equations are integrated in time using the Adams-
Bashforth scheme for the advection terms and the Crank-
Nicolson scheme for the diffusion terms. A fractional step
method is used to obtain pressure and enforce continuity. A pre-
conditioned Jacobi solver is used to invert the transport equa-
tions, and a preconditioned GMRES method to invert the pres-
sure correction equation.

As shown in figure 2, the computational domain is a rectangu-
lar box where the top and side boundaries are open with zero
normal-gradient boundary conditions on the velocity and scalar
fields. The bottom boundary is a wall with no-slip and adia-
batic conditions, except for the circular fountain source of ra-
dius r = 1, which is located in the centre, where the normal ve-
locity and temperature have uniform profiles v = 1 and φ =−1.

Results have been obtained for forced turbulent fountain flows
with a range of Froude numbers 5 ≤ Fr ≤ 24 and Reynolds
numbers 2000 ≤ Re ≤ 3500. The details of each of the sim-
ulation parameters are given in table 1. The grid size in the
central region of the domain ∆x, ∆z, ∆y is as given in table 1,
where all x and z parameters are equal. Outside the central re-
gion, the grid is stretched towards the boundaries. The time step
used for all simulations was set to ensure the Courant number
lay between 0.25 and 0.35.

Results

Data sets for fully developed fountains with the properties in
table 1 were generated. Figure 2 contains an instantaneous plot
of a constant temperature surface for a typical fully developed
fountain showing the complex and highly unsteady nature of the
flow. Time averages of the fully developed flow were generated,
with the time averaging interval located after start-up effects
had died out, and with a large enough time averaging period to
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Figure 2: Domain and boundary conditions together with a con-
stant temperature surface for a typical forced turbulent fountain.

Fr Re Pr ∆x(∆z),∆y Lx(Lz),Ly Nx(Nz),Ny
5 2500 1 0.04, 0.08 30,30 236, 265
5 3000 1 0.04, 0.08 30,30 236, 265
8 2500 1 0.04, 0.08 30,40 266, 350
8 3000 1 0.04, 0.08 30,40 266, 350

10 3500 1 0.04, 0.08 50,50 300, 400
12 2000 1 0.04, 0.08 50,60 330, 503
12 2750 1 0.04, 0.08 50,60 330, 503
12 3500 1 0.04, 0.08 50,60 330, 503
14 3000 1 0.04, 0.08 60,80 364, 550
16 3500 1 0.04, 0.08 60,80 394, 675
20 3000 1 0.04, 0.08 60,110 436, 800
24 3000 1 0.04, 0.08 80,120 486, 975

Table 1: ∆x,∆z, ∆y are the finest grid size in the central region
of the domain and Lx,Lz,Ly, Nx,Nz,Ny are the domain size and
number of nodes respectively.

ensure no windowing bias. The time average results are then
used to obtain the entrainment volume flux of ambient fluid into
the crown region.

Figure 3 contains zero contours of the time-averaged vertical
velocity field. The time-averaged field is axisymmetric and the
contours are plotted against r, the radius. Inside the contour
the flow is rising, and outside it is falling. The rising flow ini-
tially expands with height reaching a maximum width marked
by the arrows on figure 3 for each Fr and Re. The y-location of
the maximum width is defined to be the location of the bottom
boundary of the approximately hemispherical crown region. For
Fr = 5,8,14,20 at Re = 3000, the maximum widths are r ≈
1.73, 2.32, 3.71, 4.99 at heights y ≈ 6.5, 12.7, 23.2, 33.9 re-
spectively. For Re= 2000,2750,3500 at Fr = 12, the maximum
width is r ≈ 3.16 and the height is y ≈ 19.7 for all. The overall
structure is seen to vary with Fr, increasing in height and width,
while having little dependence on Re, showing that at these fully
turbulent Re values the flow is largely Re independent.

The zero velocity contour and the φ =−0.025 temperature con-
tour are plotted in figure 4 for the Fr = 12 and Re = 2750
case. As before the zero vertical velocity contour is the bound-
ary between the inner upflow and the outer downflow. The
φ = −0.025 temperature contour is defined to be the boundary
between the outer downflow and the ambient fluid. The inner
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Figure 3: Zero contours of time-averaged vertical velocity for;
(a) Fr = 5, 8, 14, 20 all at Re = 3000. (b) Re = 2000, 2750, 3500
all at Fr = 12.
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Figure 4: Zero velocity contours and φ = −0.025 temperature
contours for for Fr = 12 and Re = 2750. The red line is the
boundary between the rising flow and falling flow and the black
line is the boundary for the falling flow with the ambient fluid
flow.

radius rin is the radius of the rising fluid, and the outer radius,
rout , is the total radius of the fountain. The total crown region is
then the region above the maximum rin location, and inside the
The φ =−0.025 temperature contour.

The volume flux for the entrainment from the ambient into the
crown region is then the difference between the volume flux
of outer flow fluid exiting the crown region through the bottom,
circular, surface of the region, and the volume flux of inner fluid
entering the crown region through the bottom surface. That is
the flux of Vaout minus the flux of Vain as shown in figure 5.
This is obtained by integrating the negative of the time average
vertical velocity Va over the bottom surface of the crown region:

QE =−2π

∫ rout

0
Vardr (4)

QE , obtained as above for each case, is plotted against Fr in
figure 6, with QE normalised by the source fountain flux Qo.
Also plotted on figure 6 is the best fit line obtained by linear
regression,

QE

Qo
= 0.1721Fr+0.705 (5)
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Figure 5: Vertical velocity profile at the radial location of the
bottom boundary of the crown region. Vain is the velocity pro-
file rising flow and Vaout is the velocity profile of the falling
flow.

with a fitting coefficient of R2 = 0.9686. Overall the crown
region entrainment rate is well approximated by this linear rela-
tion for the Fr range considered. QE has relatively little depen-
dence on Reynolds number for the Re range considered. It is
also apparent that the linear relation cannot be extended to zero
Froude number, as that would imply a non-zero entrainment at
Fr = 0.

QE/Qo = 0.1721 Fr + 0.705
R² = 0.9686
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Figure 6: Linear scaling of the entrainment volume flux at the
crown region of forced turbulent fountain. The sets of data of
crown region volume flux compared with the Froude number.

Conclusions

Numerical simulations have been obtained for forced turbulent
fountains over a range of Froude and Reynolds numbers. The
fountains are characterised as having an inner upflow, an outer
downflow, and a crown region in which the inner upflow tran-
sitions to the outer downflow. The boundary between the inner
and outer flows was determined to be the zero contour of the
time-average vertical velocity, with the bottom of the crown re-
gion being the height at which the radius of the zero contour,
rin, was maximum. The total fountain width was determined by
the φ = −0.025 temperature contour, and the crown region is
that component of the domain lying above the bottom surface
of the crown, and inside the φ = −0.025 temperature contour.
The entrainment volume flux was then obtained as the negative
of the integral of the time-average vertical velocity over the bot-
tom surface of the crown region.

The crown region entrainment volume flux was shown to be
well approximated by a linear Froude number relation, obtained
by linear regression. It is noted the scaling for the total entrain-



ment flux into the fountain, that is the sum of the crown and
lateral fluxes, obtained by [6], was QE/Qo= 0.71Fr, while in
an investigation of the similar case of a negative buoyant jet
penetrating a density interface, it was found that approximately
20% of the total entrainment was associated with the crown re-
gion [14]. 20% of 0.71 is 0.14, close to the crown entrainment
scaling constant of 0.17 obtained in this investigation.

The linear relation included a constant of 0.705 implying a non-
zero entrainment at Fr = 0, which is not physically possible.
Fountains with Fr < 3 are classified as weak or very weak and
have been shown to have different, non-linear, Froude number
scalings for fountain height [9, 10]. It is expected that the crown
region entrainment will also have different scalings for weak
and very weak fountains and the scaling obtained here cannot
be extended to Fr = 0.
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