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Abstract

The eigenfunctions and eigenvalues of the Orr-
Sommerfeld/Squire operator for plane channel flow are
determined semi-analytically using the WKB approximation.

In this case k⊥ =
√

k2
x + k2

z serves as the eigenvalue for the
homogeneous equations, where kx and kz are wave numbers
in the homogeneous directions parallel to the walls. Then for
any given complex wave speed c, the eigenfunctions form a
complete set for solutions as a function of y, the coordinate
normal to the walls. Application is made to solving effectively
the initial value problem with examples assuming plane
Poiseuille base flow.

Introduction

Knowledge of the eigenvalues and eigenfunctions of the Orr-
Sommerfeld/Squire operator can be used in a variety of appli-
cations. They, of course, are quite relevant to the prediction
of stability and transition in shear flows [5]. They also could be
used to construct the resolvent for turbulent wall-bounded flows
[4], revealing the linear modes that are most amplified by the
nonlinear terms of the Naver-Stokes equations. To determine
these eigenfunctions one typically approximates the differential
operators by a spectral expansion resulting in large matrices ap-
proximating those operators.

In this paper we determine these eigenfunctions and eigenval-
ues semi-analytically for plane channel flow using the WKB
(Wentzel, Kramers, Brillouin) approximation [1]. The eigen-
functions are given in terms of the Bessel functions J1 and Y1
and the Airy functions with the wall-normal coordinate y as the
argument. The parameters are the wave numbers in the ho-
mogeneous directions kx and kz, the Reynolds number Re, and
the wave speed c = ω/kx, where the Laplace transform variable
s = iω. In this approach the critical layer U(y) = c requires spe-
cial attention, as might be expected, as well as the location of
a possible turning point where d2U/dy2 = k2

⊥(c−U(y)) where
k2
⊥ = k2

x +k2
z . See, for example, [2] to find earlier applications of

the WKB method to the analysis of the Orr-Sommerfeld equa-
tion.

For the inviscid case, we find that for all c in the real interval
[0,Umax] there is an infinite sequence of eigenfunctions v j(y,c)
with eigenvalue k⊥ j(c) . We then show how these solutions may
be used to solve the initial value problem.

In the viscous case, we find that the eigenfunctions are com-
posed of solutions that have two types of behavior. One type is
a relatively slowly varying function of y, corresponding to an in-
viscid solution. The other type of behavior is highly oscillatory,
varying as [(kxRe)1/3(y−yc)]3/2 away from the critical layer at
y = yc. Again, these eigenfunctions may be used in a variety
of ways. One obvious application is to fix kx and kz to be real
constants and then to vary Re until Im(c) = 0, determining the
point of marginal stability for that Fourier mode.

Applications are made to plane Poiseuille flow.

Linearized Navier-Stokes Equations

Consider flow in a plane channel with walls at y = ±δ and pe-
riodic boundary conditions in the x and z directions. In the
following we will be working in Fourier space in the x and z
directions. The steady mean flow and vorticity are given as

U = (U(y),0,0) (1)
Ω = (0,0,−dU(y)/dy)

We assume the flow is symmetric, i.e., U(−y) = U(y) and that
dU/dy ≤ 0 for y ≥ 0. The linearized Navier-Stokes equations
for υ and ωy, Laplace transformed in time, are then

(U(y)− c)D2
υ−U ′′(y)υ=

−iν
kx

D4
υ− i

kx
D2

υ0 (2)

(U(y)− c)ωy +
kz

kx
U ′(y)υ=

−iν
kx

D2
ωy−

i
kx

ωy0, (3)

where D2 = d2/dy2− k2
⊥ and where k2

⊥ = k2
x + k2

z ,c = ω/kx, ,
s = −iω is the Laplace transform variable, and ν is the kine-
matic viscosity.The initial functions of υ and ωy in time are υ0
and ωy0, respectively. The other velocity components, u and w,
are then recoverable from the incompressiblity constraint and
the expression for ωy in terms of derivatives of u and w.

Analysis of the Inviscid Equations

We consider first the homogeneous inviscid equation for υ, i.e.
(2) with ν and υ0 = 0.

d2υ

dy2 −
(

U ′′(y)
U(y)− c

+ k2
⊥

)
υ = 0. (4)

We assume (4) is amenable to a WKB solution

so that υ(y) is given approximately as

υ(y) = χ
−1/4(y)exp

(
±i

Z y√
χ(y′)dy′

)
, (5)

where

χ(y) =− U ′′(y)
U(y)− c

− k2
⊥ (6)

The approximation is not valid in the neighborhood of a critical
point yc where U(yc) = c and therefore requires modification.
See [3] for details.

Homogeneous Solutions to the Inviscid Equations

In this section we look for homogeneous solutions to the in-
viscid form of the Orr-Sommerfeld/Squire equations, i.e., (2)



and (3) with the RHS’s set to zero and satisfying the inviscid
boundary conditions. Thus we first consider the equation for
the eigenfunction υ j with eigenvalue k⊥ j

d2υ j

dy2 −
U ′′(y)υ j

U(y)− c
= k2

⊥ jυ j (7)

with υ j(±δ,c) = 0. We find, with the WKB method discussed
in the previous section, in fact, that for each c, real or com-
plex, there is an infinite sequence of eigenfunctions υ j each
with eigenvalue k⊥ j, ( j = 0,1,2, ...) with the even indices as-
signed to the even eigenfunctions (υ j(−y) = υ j(y)) and odd
indices to the odd eigenfunctions. For c→ c∗ there are also cor-
responding complex conjugate solutions υ∗j with eigenvalue k∗⊥ j
obtained by simply taking the conjugate of (7). If c is real then
we take (υ j,k⊥ j) as the solution for Im(c)→ 0+ and (υ∗j ,k

∗
⊥ j)

the solution corresponding to Im(c)→ 0−.

It is easily shown that υ j is orthogonal to υk, i.e.,

Z
δ

−δ

υk(y,c)υ j(y,c)dy = C jδk j (8)

if k2
⊥k 6= k2

⊥ j. And, similarly, υ∗j is orthogonal to υ∗k for j 6= k.

In Figure 1 the eigenvalues for the two lowest even modes, j = 0
and j = 2, are shown as c varies from 0 to 1 in plane Poiseuille
flow, U(y) = 1− y2. Similar plots for the lowest odd modes,
j = 1 and j = 3, are shown in Figure 2.

The first odd eigenfunction for c = 0.4, υ1(y,0.4), is shown
in Figure 3 and the corresponding second even eigenfunction,
υ2(y,0.4), is shown in Figure 4.

Figure 1: Eigenvalues k⊥ for the two lowest even modes, j = 0
(blue) and j = 2 (yellow) as c varies from 0 to 1 in plane
Poiseuille flow, U(y) = 1− y2. The plots start on the imagi-
nary axis for c = 0. For the case j = 2 the curve returns to the
imaginary axis at c≈ 0.95 after a counterclockwise trajectory.

Solution to the Initial Value Problem

In this section use use the homogeneous solutions determined
above to give an effective solution to the initial value problem,
i.e. (5) with ν = 0. As will be shown, this leads to an expansion
of υ(x,y,z, t) in terms of the υ j(y,c) modes traveling with real
speed c that are furthermore localized in (x− ct,z) in the wall-
parallel directions.

Assume, for the moment, that Im(c) 6= 0. Substituting the ex-
pansion

υ(kx,y,kz,c) = ∑
j

b j(kx,kz,c)υ j(y,c) (9)

Figure 2: Eigenvalues k⊥ for the two lowest odd modes, j = 1
(yellow) and j = 3 (blue) as c varies from 0 to 1 in plane
Poiseuille flow, U(y) = 1− y2. The plots start on the imagi-
nary axis for c = 0. For the case j = 3 the curve returns to the
imaginary axis at c≈ 0.8 after a counterclockwise trajectory.

Figure 3: Real (blue) and imaginary (yellow) parts of the first
odd eigenfunction for c = 0.4, υ1(y,0.4).

Figure 4: Real (blue) and imaginary (yellow) parts of the second
even eigenfunction for c = 0.4, υ2(y,0.4).

into the inviscid form of (5) and using (8) with the assumption
C j = 1, we find that

b j =
−i

kx(k2
⊥ j(c)− k2

⊥)

Z
δ

−δ

υ j(y′,c)∇2υ0(kx,y′,kz)dy′

U(y′)− c
. (10)



Laplace Inversion

The inverse Laplace transform is given by

1
2π

Z
Γω

υ(kx,y,kz,ω/kx)e−iωtdω =
kx

2π

Z
Γc

υ(kx,y,kz,c)e−ikxctdc,

(11)
where we have used ω = kxc. Γω is the integration path from
−∞ + ia to ∞ + ia with a > 0, i.e., above all singularities in
the complex ω plane and therefore the integration path for Γc is
from −sgn(kx)∞ + ia/kx to sgn(kx)∞ + ia/kx. In addition, it is
easily shown that for c large, k2

⊥(c)→−[( j +1)π/2δ]2 and

υ j(y,c)→ cos
[
( j +1)πy

2δ

]
, ( j = 0,2, ..) (12)

υ j(y,c)→ sin
[
( j +1)πy

2δ

]
, ( j = 1,3, ..) (13)

as |c| → ∞. Thus, except for the factor 1/(U(y′) − c) in
(10), υ(kx,y,kz,c) becomes independent of c as |c| → ∞. For
the inviscid case the functions υ j(y,c) contain terms propor-
tional to log(U(y)− c). Thus if we take maxy[U(y)] = 1 then
υ(kx,y,kz,c) will have a branch cut on the real axis, 0 ≤ c ≤ 1,
with an embedded simple pole at c = U(y′). The net result is
that Γc, regardless of sgn(kx) can be reduced to a closed contour
encircling the branch cut plus pole in the clockwise direction:

υ(kx,y,kz, t) =
i

2π
∑

j

I
υ j(y,c)q j(kx,c,kz)

(k2
⊥ j(c)− k2

⊥)
e−ikxctdc, (14)

where

q j(kx,c,kz) =
Z 1

0

υ j(yc′ ,c)∇2υ0±(kx,yc′ ,kz)dc′

(c− c′)U ′(yc′)
(15)

and where we have changed the integration variable y′ to
c′ by defining U(y′) = c′ and yc′ = U−1(c′) and intro-
ducing the function ∇2υ0±(kx,yc′ ,kz) = ∇2υ0(kx,yc′ ,kz) +
(−1) j∇2υ0(kx,−yc′ ,kz).

Fourier Inversion

From (14,15) we see that to obtain υ(x,y,z, t) we will
need to perform an inverse transform on the the product of
∇2υ0±(kx,yc,kz) or q j(kx,c,kz) with 1/(k2

⊥ − k2
⊥ j(c)). Thus

the result will be the equivalent of the convolution of q j(x,c,z)
with the inverse transform of 1/(k2

⊥ − k2
⊥ j(c)) displaced in x

by ct. For 2D applications (no z dependence) we find, taking
Im(k⊥ j)≥ 0, that this inverse transform is simply

1
2π

Z
∞

−∞

eikxxdkx

k2
x − k2

⊥ j(c)
=

i
2k⊥ j(c)

eik⊥ j(c)|x| (16)

and therefore

υ(x,y, t)=
1

4π
∑

j

I υ j(y,c)
(R

∞

−∞
q j(x′,c)eik⊥ j(c)|x−x′−ct|dx′

]
dc

k⊥ j(c)
.

(17)

Similarly, the inverse transform of 1/(k2
⊥− k2

⊥ j(c)) with x and
z dependence is

1
4π2

Z
∞

−∞

Z
∞

−∞

eikxx+ikzzdkxdkz

(k2
⊥− k2

⊥ j(c))
=

1
2π

K0(−ik⊥ jr), (18)

where K0 is the modified Bessel function and r =
√

x2 + y2.
Therefore

υ(x,y,z, t) = −i
4π2 ∑ j

H
υ j(y,c)

R
∞

−∞

R
∞

−∞
(19)

K0(−ik⊥ j
√

(x− ct− x′)2 +(z− z′)2)q j(x′,c,z′)dx′dz′ dc.

Notice from (16) that the (c, j) combinations that lead to smaller
imaginary parts of k⊥ will generally yield higher higher ampli-
tude contributions to υ from the initial field υ0. This is true also
for the cases of (x,z) dependence. For the lowest even mode,
j = 0, we found an approximate minimum imaginary part for
c = 0.1 with k⊥0 = 0.6 + 0.65i. Similarly, for j = 1 the mini-
mum occurs at approximately c = 0.4 with k⊥1 = 0.795+2.19i,
still a larger imaginary part than that of k⊥0(c) for all c. The cor-
responding plots for 1

2π
K0(−ik⊥ jr) are shown in Figure 5. Note

the wide difference between the cases j = 0 and j = 1.

Figure 5: Real (blue) and imaginary parts (yellow) of
1

2π
K0(−ik⊥0r) for c = 0.1 ; Real (green) and imaginary parts

(red) of 1
2π

K0(−ik⊥1r) for c = 0.4. Not shown for r < 0.25
because of the singularity of K0 at r = 0.

Solutions to the Squire Equation

To complete the analysis of the inviscid form of (3), we can
solve the initial value problem for ωy simply as

ωy =− kz

kx

U ′(y)
(U(y)− c)

υ− i
kx(U(y)− c)

ωy0 +Cδ(U(y)− c),

(20)
where υ is now assumed known and C depends on ω,kx, and kz.
However a sometimes more useful equation for ωy is given in
terms of the original independent variables (x,y,z, t):

∂ωy

∂t
+U(y)

∂ωy

∂x
=−U ′(y)

∂υ

∂z
+ν∇

2
ωy. (21)

Solving (21) directly with the initial condition ωy(x,y,z,0) =
ωyo(x,y,z) and υ given yields

ωy(x,y,z, t) = ωyo(x−U(y)t,y,z) (22)

−U ′(y)
Z t

0

∂υ

∂z
(x−U(y)(t− t ′),y,z, t ′)dt ′.



Note from (22) that ωy is being generated continuously as long
as ∂υ/dz 6= 0. And it therefore follows from (19) that the func-
tion ∂K0(−ik⊥1r)/∂z will play an important role in the gener-
ation of ωy. This function is shown in Figures 6 and 7 for the
case c = 0.1, j = 0.

Figure 6: Real part of ∂K0(−ik⊥r)/∂z for the case c = 0.1, j =
0.

Figure 7: Imaginary part of ∂K0(−ik⊥r)/∂z for the case c =
0.1, j = 0.

Homogeneous Solutions to the Viscous Equations

The homogeneous viscous equation for υ can be rewritten as

d4υ

dy4 − iRk

(
U(y)− c−

2ik2
⊥

Rk

)
d2υ

dy2 (23)

+ iRk

(
U ′′(y)+ k2

⊥(U(y)− c)−
ik4
⊥

Rk

)
υ = 0,

where Rk = ν/kx. See Equation (2). Following the WKB
method we assume

υ = exp(iS(y)) (24)

and that |S′2|>> |S′′|. Substituting (24) into (23) and assuming
S = S0 +S1 + ..., we find two solutions for S′20 :

(S′20 )± =− iRk

2

(
U(y)− c±

√
(U(y)− c)2 +

4iU ′′(y)
Rk

)
− k2

⊥,

(25)
and an equation for the next order term S′1 in terms of S′0 and S′′0 .
For reference, application of the above procedure applied to the
inviscid equation gives S′20 = χ(y) given by (6) and S′1 = − S′′0

2S′0
so that S1 =− 1

4 log(χ(y)), as seen in (5).

Examining the result (25), we find that (S′20 )+ asymptotes to the
inviscid result (6) as y increases away from the critical point
yc (U(yc) = Re(c)). A similar result obtains for (S′20 )− as y
decreases away from yc. On their respective opposites sides
of yc the analysis leads to highly oscillatory behavior for υ ∼
[(kxRe)1/3(y− yc)]3/2 away from the critical point. Finally, the
approximation S≈ S0 +S1 is not valid for y in the neighborhood
of yc. The above solutions must be matched to inner solutions
given by modified Airy functions [2] or by solutions obtained by
Fourier Transform methods. Then we proceed as in the inviscid
case above with three potentially complex parameters , c,kx,
and k⊥, for a given Reynolds number = 1/ν.

Summary and Conclusions

The eigenfunctions and eigenvalues of the Orr-
Sommerfeld/Squire operator for plane channel flow are
determined semi-analytically using the WKB approximation.
In this case k⊥ serves as the eigenvalue for the homogeneous
equations. For any given complex wave speed c, the eigen-
functions form a complete set for solutions as a function of
y, the coordinate normal to the walls. Application is made to
solving effectively the initial value problem for inviscid flows
with examples assuming plane Poiseuille base flow. Notably,
specific ranges of c for the lower order modes in y have
smaller values of Imag(k⊥) yielding particularly important
contributions to the solution. This result is apropos to the goal
of obtaining reduced-order representations of the flow field as
it is for resolvent analysis.
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