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Abstract

Coherent structures are believed to play an important role in
transition to turbulence. Most work done in investigation of
coherent structures in pipe geometry has been limited to numer-
ical calculation of solutions for Newtonian fluids at moderate
Reynolds numbers [18, 17, 9].

In the present work, we develop a code to solve Navier-Stokes
equation for non-Newtonian fluids to find nonlinear exact co-
herent structures in the form of three-dimensional travelling
wave solutions. We present our preliminary findings at low
Reynolds numbers only for few viscosity parameters using a
simple Power-law fluids model.
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Introduction

Research on exact coherent structures in flows in pipes, chan-
nels and boundary-layer flows has attracted much recent inter-
est. There have been several investigations of travelling wave
(TW) solutions for Newtonian fluids. Such solutions have been
computed by [8], [14], [15], [16], [4] and [1] in channel flow.
[3], [6], [17], [7], [9], [13] have given related results for pipe
flow with different degrees of rotational symmetry. There is ev-
idence from, for example, [12] to suggest that travelling wave
(TW) states can be part of the edge state that characterizes the
boundary of the basin of attraction of the linearly stable Plane
Couette or pipe Pouisseuille flow. These nonlinear TW states
are also of potential technological importance if suitable con-
trols can be inserted to stabilise a coherent state with a signif-
icantly smaller drag than an uncontrolled turbulent flow. The
question of the influence of a non-Newtonian rheology on these
traveling waves is of fundamental interest, since these waves are
believed to play important role in transition to turbulence.

The physical mechanism to sustain such steady states in Newto-
nian fluids for large Reynolds number is now well-understood.
In general for pipe flow, three dimensional traveling wave solu-
tions to Navier-Stokes equations can be written, in cylindrical
coordinates (r,0,z), of the form

u=vp(r)+U(r,0)+ vy, (r,0,z—ct) (1)

where vp(r) is the base flow ( (1 —r?)Z for Newtonian flu-
ids) , U(r,8) is streamwise independent part of the flow and
vy = (u,v,w) is 27 periodic in both 6 and in Z := oz — ct),
with zero axial average over a period, denoted by (v,,) = 0.
It is assumed that cylinder axis is aligned along z. If we write
U(r,8) = (U(r,0),V(r,6),0)+(0,0,W(r,8)), the first term con-
tains radial and azimuthal components of streamwise indepen-
dent velocity U(r,0) which represents streamwise vortices and
is referred to as the roll part of the flow; the latter is termed
the streak and represents streamwise-independent axial veloc-
ity. The last term in (1) represents three dimensional wave part
of the flow. Three way interaction between rolls, streaks and
waves is essential to sustain these states.

In Ozcakir eral.[11], previous numerically calculated states
with two-fold azimuthal periodicity in pipe geometry were

roughly identified as finite R realizations of a Vortex Wave In-
teraction (VWI) states with an asymptotic structure similar to
the ones in channel flows studied earlier by Hall & Sherwin
[5]. In the context of non-Newtonian fluids, there hasn’t been
much work done that focuses on the study of travelling waves.
Recently [19] investigated the effect of shear thinning on three-
fold rotationally symetric travelling waves using Carreu Model.

The aim of this short paper is to briefly describe the method-
ology used in computing nonlinear travelling waves in non-
Newtonian fluids in general and to present our initial findings
for non-Newtonian counterparts of VWI states described in

[11].

Description of the problem

‘We consider a flow driven by a constant pressure gradient along
a pipe of radius a where the velocity field u and pressure p
satisty

plu +u-Vul = —Vp+V. [n(Vu+(Vu)")], V.u=0. 2)

As mentioned in the introduction, TW states correspond to so-
lutions of the Navier-Stokes of the formu =vg(r,0) +v(r,0,z—
ct) where the first term vp is the base state and v is the pertur-
bation velocity which travels with real phase speed c. It is clear
that v satisfies

c%:—V~Vv—VB-VV—V~VVB_VA71NM =
~ V- [v(u)(Vv+(vv)1)]
— V- [v(u)(Vvp + (Vvg)")]
+V- [v(ve)(Vve + (Vve)T)] |
V.v=0

where 1 (u) = pv(u) and the perturbed pressure g = A~ A[v]
is determined by solving Aq = A[v] with Neumann boundary

condition g—z = A [v] at the pipe wall. Here

AN[v]:==V-|(v-V)v+vpg-Vv+v-Vvg

R AT 0
—V. V- [v(u)(Vvg + (Vve)T)],

Ao [V] := =V - [v(u) (Vv + (Vv) )]
+V - [v(vg)(Vvp + (Vvp) )] (6)
—V- [v(u)(Vvg+ (Vvg)")],

In our computations, we find it more efficient to eliminate the
pressure through a Poisson equation rather than by enforcing
the divergence condition directly. For this reason, instead of us-
ing —Vgq in (3), we replace it using the notation —VA~!A([v]
merely to emphasize that pressure modes do not appear in the
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Newton iteration scheme for traveling waves or stability calcu-
lations since are eliminated in terms of velocity modes.

Base flow using Power-Law

For power-law fluids, viscosity is described as
n=Ky"! )

with shear rate 7, consistency constant K and flow index n where
n < 1 describes shear thinning, » = 1 newtonian and n > 1 shear
thickening fluids.

If we assume that the base flow is of the form vp(r) =
(0,0,wp(r)), shear rate is calculated as Yg(r) = [wi(r)]. Us-
ing Navier-Stokes equations (2), we get

rap

“7a ®

nawi(r)

where %—’Z’ is assumed constant pressure gradient and 1p is the
viscosity for base flow defined as

Mg = Kys" = K(-wp(r)""".
Hence, (8) becomes
(—1) ki) = 27

which has a solution

n+l

- ()°)

1
n+ 1 a E
where U, = aTl n:lL 1 (— 2K a—IZ)) is the centerline velocity.

(Note that K 32 < 0.)

Corresponding pressure gradient in terms of velocity can be

written as,
dpp _ 2KU? (n+1>"

0z - a1 n

Nondimensionalisation

For our calculations of non-newtonian flows, we will choose
viscosity scale as m,, (mean wall viscosity) where Reynolds
number Re = Ucap/m,, for a pipe of radius a with centerline
velocity of the base flow is U.. Mean wall viscosity m,, can
be calculated using axial momentum equation balance in terms
of given pressure gradient. It is calculated from the mean wall
shear stress, T,, which is directly

adp
Ty =—==— 9
W 292 (©)
For Power-Law fluids, it can be shown that mean wall viscosity
is

ny =K'/, (10)

Therefore, Navier-Stokes equations (2) is written in the follow-
ing non-dimensional form

[, +u-Vu] = -Vp+ Riev. M(Vu+(Vo)H] , V-u=o0.
(11

with wg(r) =1 — " and aaLZB = f%(’”l ).

n

Computational Method

The efficient and accurate numerical calculation of the three di-
mensional travelling wave solutions of the Navier Stokes equa-
tions is challenging due to highly nonlinearity of the viscosity
term. This requires a large number of modes which as a result
leads to large matrix inversion problem for the associated New-
ton iteration scheme. Our computational method is based on a
Galerkin truncation in the Fourier-modes in 6 and Z = o(z — cf)
and collocation method that uses a Chebyshev representation in
r with appropriate radial basis functions ®;, \¥';. The procedure
is similar to that used by [17] and automatically accounts for
the boundary condition. We use the following truncated basis
representation for the velocity field

(uﬁ,lc; coslZ+ uﬁ; sinlZ)®(r; kko) cos kko®

u
v | = Z (v<.,1<; cos lZ+v§.2 sinlZ)®;(r; kko) sinkko®
0<j<N R ~
W 0<h<m (wﬂlj smlz—O—wﬁ} coslZ)Wj(r;kko) cos kkoB
0<[ even<P

(u% coslz+ ”(‘2 sinlZ)® ;(r; kko) sinkko®

iy (vj{> o)

Alld coslZ+ vjil sinlZ)®;(r; kko) cos kkoB

05izm \(w'y)sinz 4 wly) cos 12)¥ (rikko) sinkko®
1<l odd<P :

12)

which is suitable for ko fold azimuthally symmetric (Ry,) trav-
eling wave states with shift-and-reflect (S) symmetry, as dis-
cussed in [10]. This representation fixes the origin in 6, even in
the case when basic state vp = vp is rotationally symmetric 6.
In addition, to fix the origin in z, we impose the phase condition

M=

! =0 (13)

=0

We use representation (12) and equate coefficients of
cos(kkg®)cos(lZ) , sin(kkgB)cos(lZ), cos(kkoB)sin(lZ), and
sin(kk0) sin(Iz) for 0 < k < M, 0 <[ < P on both sides of
(3) and evaluate resulting expressions at the given collocation
points {r_,-/}. This, together with scalar equation (13), re-
sults in a nonlinear system of algebraic equations for (X,¢) in

the form G (X, c;B) = 0 where X = {u;kl,v;kl,w;kl}j‘k.” and

B = (o, K,n) is the set of specified parameters. Details of our
numerics and imposed symmetries can be found in [11].

The pressure elimination is efficacious in TW calculations since
the inversions of relatively small matrices are involved for each
Fourier mode in 0 and z and that is more than compensated for
by the reduction of the size of the Jacobian by a fourth in the
Newton iteration scheme for the nonlinear system.

Numerical Results

Calculations described here are limited to kg = 2; i.e. two-fold
azimuthally symmetric TW states. Table (1) shows list of vis-
cosity parameters used in power-law fluid simulations of exact
coherent structures. Here, we only present results with nondi-
mensional constant K value while changing n to account for
change in viscosity. In figures 1, 2 and 3 we display roll and
wave components of these TW states in a plane perpendicular
to the pipe axis at Re = 5000 when o = 1.55 for n values given
in Table (1). In each plot the rolls U(r,0) = (U, V,0), radial and
azimuthal waves (u,v,0) are depicted using arrows and axial
waves w are represented in colors where the lighter color corre-
sponds to positive values of w, while darker colors correspond
to negative such values. Axial wave velocity w(r,0,z9) is shown



n | K %—p
1 1 - 0.0008
8 | 1 ] -0.00076525
.6 | 1 ] -0.00072051

Table 1: Parameters for simulations reported here for power-law
fluids for a pipe of length 21t/o with o0 = 1.55 at Re=5000.

at a fixed zop = 2n/a. The yellow background in figures 1a, 2a
and 3a has no physical meaning; the color is chosen to make
the arrows describing the roll behaviour more visible. Figure
1 shows a travelling wave for a Newtonian fluid at Re = 5000.
Both rolls and waves are concentrated in a narrow region away
from the center of the pipe and the wall. This is an example of
a VWI state where the dominant flow behaviour is observed in
a ciritical layer away from the origin ([5]). In the case of non-
Newtonian fluids for n» = 0.8 and 0.6 flow is still concentrated
around a critical region as shown in figures 2 and 3. While
there is no significant difference in the wave profiles, a clear
change in the behaviour of the rolls is observed where counter-
rotating vortices closer to the pipe center lose their intensity as
flow becomes more shear thinning (fig. 2a & 3a) in comparison
to figure la
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Figure 1: (a)Roll U and (b) wave profiles v,, at Re = 5000, n =1
at oo = 1.55. (b) 15 equispaced contour levels are plotted be-
tween minimum and maximum w(r, 0, z9) where min/max taken
over (r,8).

Conclusions

In this paper, we report our preliminary findings on non-
linear travelling waves with two-fold rotational symmetry in
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Figure 2: (a)Roll U and (b) wave profiles v,, at Re = 5000, n =
0.8 at oo = 1.55. (b) 15 equispaced contour levels are plotted be-
tween minimum and maximum w(r, 0, z9) where min/max taken
over (r,8).

pipe flows at low Reynolds numbers using power-law rheology
model. Reported travelling waves are perturbations of off VWI
states given in [10]. We present some features of velocity fields
of these travelling waves and compare them to their Newtonian
counterparts. Our calculations suggest that decreasing the value
of n (making flow more shear thinning) while holding K con-
stant, causes the rolls near to wall get stronger while rolls near
the pipe center are dissapearing. On the other hand, the action
of waves are still occurring inside a critical layer which is con-
sistent with VW1 theory.

In an upcoming paper we will discuss stabilising effect of the
shear-thinning rheology, which can be viewed as a part of the
explanation of the delay in the transition to developed turbu-
lence. Our calculations of travelling waves using different rhe-
ology models is a work in progress.
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Figure 3: (a)Roll U and (b) wave profiles v,, at Re = 5000, n =
0.6 at oo = 1.55. (b) 15 equispaced contour levels are plotted be-
tween minimum and maximum w(r, 0, z9) where min/max taken
over (r,8).
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