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Abstract

A new numerical treatment for flows with shocks proposed by
Gnoffo [3, 4] is independently implemented and its suitabil-
ity assessed for the simulation of unsteady flows with shocks.
The method combines strengths from both shock-tracking and
shock-fitting, and is applied to a static, structured grid. This pa-
per details the specifics of implementing the method for the ad-
vection equation, with the larger goal of applying it to the sim-
ulation of expansion tubes that produce hypersonic test flows.
The new method, based on Walsh functions, is compared to a
conventional finite-volume method of low order to provide in-
sight on whether the new method is worth pursuing for multi-
dimensional flows.

Introduction

There are two commonly used techniques to treat shock waves
in the numerical simulation of compressible flows: shock-
capturing and shock-fitting. The former works by allowing the
discretisation technique within a given compressible flow code
to handle the development of the discontinuity and the subse-
quent transfer of information from flow variables either side.
As no extra schemes or data structures are required in terms of
a regular finite volume method, the shock-capturing approach is
easy to implement. This points to the method’s limitations: as
a result of the numerical methods handling the change of flow
variables across the shock, data points can occur between the
pre- and post-shock states which are a numerical artefact and
do not reflect the shock shape [8]. Low-order methods are dif-
fusive, so when handling shocks they cannot capture the sudden
change in properties and the result is smearing of shock infor-
mation across multiple cells. High-order methods are less dif-
fusive and can better capture the near discontinuous change, but
do so at the cost of introducing ripples of overshoots and un-
dershoots in the flow properties, known as Gibb’s phenomenon.
Limiters, a significant achievement in CFD history [6], work to
prevent these overshoots and undershoots by limiting the gra-
dient or preventing new extremities. A drawback of limiters is
that locally, downwind of the shock they reduce the scheme to
first order. Another drawback is that extrema in the flow are
locally deformed by the limiter [6].

Shock-fitting treats shocks as a boundary with no transfer of
information through interpolation for fluxes or gradient calcu-
lation schemes. Instead, exact Rankine-Hugoniot relations are
applied across the shock to determine the flow variables on ei-
ther side. The difficulty with shock-fitting is in locating the
shock with high accuracy and tracking its movement through
the domain (including interactions with other shocks or edges),
as the grid needs to align well with the shock. A floating shock-
fitting method was developed by Moretti [7] whereby the shock
is allowed to move through the points of a fixed grid and is
treated as an internal boundary [2]. This helped avoid the re-
quirement of moving the grid, but it was found to not be ro-
bust and require ‘a heavy, patient and handcraft’ effort by the
researchers [8]. Further work into floating shock-fitting for un-
structured grids [9, 10, 1] has shown promising results, but as
best practices maintain that the cell faces should be perpendicu-

lar or parallel to shocks [4], methods for shock-fitting on struc-
tured grids should still be investigated.

A floating shock-fitting and shock-tracking method recently
proposed by Gnoffo [4] has the potential to improve current
methods for a structured grid. The present work is an indepen-
dent implementation of that method and a comparison to a one-
dimensional code with conventional finite-volume schemes.
These conventional schemes are representative of the schemes
we presently have available in the compressible flow solver,
Eilmer [5]. As such the comparison between the new hy-
brid method and the conventional schemes will serve to inform
whether the new method is worth pursuing in our production
code. The new method applies discontinuous basis functions
to interpolate through a set of discrete data at regular spacing,
providing a correction to the gradients and enabling detection
and tracking of shocks. The larger goal of this work is to apply
the shock-tracking method to the simulation of expansion tubes
for hypersonic test flow production. A critical feature of those
simulations is the ability to track and adequately resolve a trav-
elling shock over a large physical domain on the order of tens
of metres.

Numerical Method

Polynomial curve fit with Fast Walsh Transform

Walsh functions are a closed set of orthogonal functions [12]
that exhibit closure under multiplication, and they have been
shown to be capable of detecting features in flow such as dis-
continuities [4]. Gnoffo’s past work on solving flow problems
with Walsh functions [3, 4] provides explanations and deriva-
tions of the following equations (and the reader is referred to
that work for more detail).

A set of 2p discrete data points fi and monomials xm
i can be

represented by a truncated series of Walsh functions (gn) with
coefficients An and Bn,m respectively.

fi =
2p

∑
n=1

Angn(xi) where An =
2p

∑
i=1

gn(xi) fi∆x (1)

xm
i =

2p

∑
n=1

Bn,mgn(xi) where Bn,m =
2p

∑
i=1

gn(xi)xm
i ∆x (2)

The coefficients can be calculated as per equations (1, 2) or by
using a fast Walsh transform (FWT) as explained in [4]. Using
Gnoffo’s shock detection method [4] to find the shock location
x∗ and height h, a polynomial fit accounting for the shock is
given by

f̃ (x) =
m

∑
k=0

akxk +hH(x,x∗) (3)

where H(x,x∗) is equal to 0 for x ≤ x∗ and equal to 1 for x >
x∗. The novel idea in using that FWT fit is that the fit works
in smooth regions of the flow to provide interpolation of flow
values, and it can be used to detect discontinuities in the flow.

Application to Problems



Gnoffo details a general formulation for solving differential
equations with the FWT fit [4]; the formulation for the advec-
tion equation is shown here. The model equation for linear ad-
vection is

∂q
∂t

+
∂ f
∂x

= 0 (4)

with f = cq, q a scalar, a domain of 0 ≤ x ≤ 1 and a periodic
boundary condition whereby q(0, t) = q(1, t). The advection
wave speed is constant at c = 1, thus simplifying the relation-
ship between flux and flow variable to

∂ f
∂q

= 1 (5)

A semi-discrete numerical form is

dq
dt

=−∂ f
∂x

=− 1
∆x

(
f ∗i+1/2− f ∗i−1/2

)
(6)

When there are no shocks present in the stencil, a fourth-order
accurate scheme for the numerical flux is incorporated such that

dq
dt

=− 1
24∆x

(27( fi+1/2− fi−1/2)− ( fi+3/2− fi−3/2)) (7)

The fluxes at the cell interfaces are now calculated from the val-
ues at the cell centres using interpolation that incorporates the
FWT polynomial fit. A FWT fit is applied over a set of discrete
qi cell centre data points, and from that the FWT fit data points
at the cell centre q̃i and the cell interfaces q̃i+1/2 are obtained.
It has been shown [4] that the FWT polynomial fit breaks down
when there are multiple extrema in the flow, and the method can
only detect two shocks within a fit. Thus multiple overlapping
FWT fits are applied over the domain, with the final cell inter-
face variable and thus cell interface flux selected from the ap-
propriate FWT fit after. For each FWT fit, the following process
provides a correction to the cell interface value. The correction
at the cell centre is

δq′i = δqi = qi− q̃(xi) (8)

which can then be interpolated to obtain the correction at the
cell interface (no boundary treatment is required as the end val-
ues will not be selected later)

δq′+i+1/2 = L(δq′i+1,δq′i,δq′i−1,δq′i−2) (9)

δq′−i+1/2 = L(δq′i,δq′i+1,δq′i+2,δq′i+3) (10)

An interpolation stencil for evenly spaced cells is

L(a,b,c,d) = (5a+15b−5c+d)/16 (11)

The corrections to the fluxes at the interfaces are now deter-
mined — for advection to the right only the upwind flux is re-
quired.

δ f+i+1/2 = δq′+i+1/2 (12)

δ f−i+1/2 = 0 (13)

And finally the corrected cell interface flux value is

fi+1/2 = f̃ (q̃(xi+1/2))+δ f+i+1/2 +δ f−i+1/2 (14)

Overlapping FWT fits are applied over the domain to reduce
the introduction of non-physical features caused by interpola-
tion through discontinuities where successive FWT fits meet.
Figure 1 shows a stencil for the fluxes modified from [4]. For a
domain with n elements there will be n ‘elemental’ FWT fits as

shown in the black (top), and n ‘blended’ FWT fits as shown in
red (bottom) and a second blended fit (not shown) at the periodic
boundary. The correction process described above is applied
along the length of each FWT fit, and after calculating the inter-
polation from the cell centres to the cell faces sections of each
FWT fit are chosen for the final value. Testing and comparison
to the exact flux ( f = q) demonstrated that it was not possible
to achieve accurate fluxes if selecting flow data from each FWT
prior to interpolation. Only information (cell centres and inter-
faces) between Na/4 and 3Na/4−1 (0 index) from the elemen-
tal FWT are used, and within Na/4 of an elemental boundary
from the blended FWT fit - the rectangular blocks show the re-
gions where the flow properties are selected from the respective
fits. Note the distinction here - the FWT fit over the interface
between two elements is referred to as the ‘blended’ FWT fit,
but there is no combining of the values between the elemental
and blended FWT fits.

Figure 1: Stencil showing locations of elemental FWT fits (top)
and blended FWT fits (bottom). The FWT fits are applied using
cell centre information from every point within their element,
however at a later stage only the regions within the rectangular
regions are selected from each FWT fit. Modified from Gnoffo
[4]

Using a time-integration method such as Runge-Kutta (RK) to
advance the system, the process for each iteration beginning
with the cell centred flow variables is:

• apply a FWT polynomial fit across the cell centred flow
variables (qi) in each element (including the blended ele-
ments), obtaining q̃i and q̃i+1/2;

• for each step in the RK updater, using the new pseudo
variables (i.e. q passed to the RK):

– calculate corrections between the FWT fit cell cen-
tre flow variables, along the length of each fit;

– interpolate along each FWT fit to obtain the correc-
tions at the cell interfaces - disregard the end points
missed by the interpolation stencil;

– using the element stencil shown in Figure 1 and
described previously, select the appropriate values
from the appropriate sections of the cell interface
corrections from the element and blended FWT fits;

– calculate corrections to the cell interface invisid flux
values from the cell interface corrections;

– update inviscid fluxes using corrections from the
FWT interpolation information;

– calculate flux difference terms; and,
– update RK pseudo variables.

• obtain new cell centred flow variables.

Finite Volume Method for Comparison

To compare Gnoffo’s scheme using FWT fits to more conven-
tional method, we chose some finite-volume (FV) schemes of
2nd- and 3rd-order spatial accuracy. These FV schemes are rep-
resentative of the current technology available in the flow solver,
Eilmer. So the comparison will provide some insights on the
benefits or otherwise of developing Gnoffo’s method in multi-



dimensions for our production code. The selected FV schemes
are Fromm’s scheme (2nd order) and a 3rd-order scheme from
Hirsch [6]. The van Albada limiter was used in the FV schemes
when doing the advection problem with a C0 discontinuity.

For all spatial schemes, a fourth-order Runge-Kutta temporal
scheme was used. Keeping a consistent temporal scheme allows
the comparison to focus on the spatial accuracy offered by the
various methods.

Results and Discussion

To enable verification of this implementation with Gnoffo’s
results, three profiles as suggested by Gnoffo were advected
20 times across a domain with periodic boundary conditions.
The three profiles present increasing difficulty to the numerical
methods in terms of their discontinuities: (a) a Guassian profile
(continuous); (b) a triangular profile (C1 discontinuity); and (c)
a cosine profile with Heaviside function jump (C0 discontiuity).
These test profiles for advection are shown in Figure 2. To de-
termine spatial accuracy, solutions were computed on various
grids of increased refinement.
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Figure 2: Test profiles for advection equation.

Cell sizes were kept constant between the different schemes,
and reduced by powers of 2 for each refinement. Figures 3–7
show the 1-norm error for the Gaussian, triangular, and cosine
with jumps profiles respectively.
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Figure 3: L1 error comparison for advection of a Gaussian pro-
file, 20 times across a domain with a cyclic boundary condition.

For the Gaussian profile, the second-, third-order FV schemes
and the fourth-order FWT method all display 2nd-, 3rd- and 4th-
order error convergence behaviour, as expected. The applica-
tion of limiters to the second- and third-order schemes reduces
the accuracy of the solution around the extrema region of the
Gaussian profile, resulting in significantly reduced accuracy (to
approximately 1st order). The fourth-order scheme with FWT
interpolation corrections performs better than the fourth-order
scheme without. As noted by Gnoffo [4], a scheme with four
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Figure 4: L1 error comparison for advection of a triangular pro-
file, 20 times across a domain with a cyclic boundary condition.
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Figure 5: L1 error comparison for advection of a cosine profile
with two discontinuities of height 1, 20 times across a domain
with a cyclic boundary condition.

elements and 2p cells per element has similar accuracy to a
scheme with eight elements and 2p−1 cells per element.

The triangular profile shows similar results, with the excep-
tion that the fourth-order scheme with the FWT interpolation
shows no improvement over the same scheme without the FWT
fit. This may be solved by the detection of C1 discontinuities,
which Gnoffo has now implemented. In the advection of the co-
sine profile (with jumps) there is little difference between the or-
der of convergence of the 1-norm, but the higher order methods
are still more accurate. The fourth-order method with shock-
tracking offers significant advantage over the other methods,
and improves on the fourth-order scheme without FWT correc-
tions. It can be seen in Figure 6 that both of these methods
are almost indistinguishable from the analytical solution after a
single cycle of the domain. The order of convergence for the
1-norm for the fourth-order shock-tracking is −2.39.

Conclusions

Gnoffo’s method of feature detection and interpolating with
FWT has demonstrated increased levels of accuracy for the ad-
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Figure 6: Comparison of different methods and schemes at the discontinuity in the cosine with jumps profile, after being advected once
across the periodic domain. Insert shows the top of the shock in more detail — note that lines for ‘4th-order FV’ and ‘4th-order FWT’
overlap each other. The lines for ‘4th-order FV, shock-tracking’ and ‘4th-order FWT, shock-tracking’ do as well.

vection equation with shocks. The implementation of Gnoffo’s
method has been verified through comparisons of 1-norm error
data. The short term goal is complete testing of the new method
as a proof-of-concept in simple one-dimensional problems in-
cluding Burgers’ equation and the Euler equations. If shown vi-
able, the long term goal is use the FWT fit for interpolation and
shock-tracking in a production multi-dimensional finite volume
code.
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