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Abstract 

In the present study, curvature effects on the critical Rayleigh 
number Rac for the instability of natural convection boundary 
layers of Pr=7 on various isothermally heated vertical cylinders 
are investigated by direct stability analyses (DSA) with an 
axisymmetric numerical model. To determine the Rac, random 
temperature perturbations are introduced into a small region 
(2% of the total height) of the upstream heated surface near its 
leading edge. The slender cylinders under consideration span 
the aspect ratio A=H/R0=2400, 960, 480 and 240, where H is 
the height of the cylinders and R0 is the radius. A linear 
dependence of the critical Rayleigh number Rac on the aspect 
ratio A is obtained for the first time. The analyses of the kinetic 
energy balance further reveal that as the aspect ratio A 
increases, the boundary layer tends to be more stable since the 
ratio of energy production to dissipation reduces.      

Introduction  

One of the most important characteristics of a natural 
convection boundary layer instability is the critical Rayleigh 
number Rac (also characterized by critical Grashof number Gr 
in some literature) at which the flow becomes unstable. The 
boundary layers developing from an isothermally heated flat 
surface were studied theoretically and experimentally by 
Szewczyk [1], in which the Rac was determined to be 1.27×106 
at Pr=10. In the context of differentially heated cavity flows, 
Rac was determined to be 6.8×105 by a direct stability analysis 
for the cavity at Pr=7.5 [2]. The Rac of the boundary layers over 
uniform flux vertical surfaces were also examined 
experimentally by Polymeropoulos et al. [3] and others. 

While the instabilities of natural convection boundary layers on 
heated flat surfaces have been studied extensively [4-6], the 
instabilities of natural convection boundary layers adjacent to 
isothermally heated vertical slender cylinders have not received 
much attention. Intuitively, a natural convection boundary layer 
adjacent to a cylinder of a large radius may present similar 
instabilities to those on a heated flat plate. As the cylinder radius 
decreases, the curvature of the cylinder is expected to become 
increasingly important for the instabilities of the adjacent 
boundary layer.  

The dependence of the base temperature and velocity profiles 
(without any perturbations) on the aspect ratio has been 
examined by the present authors previously [7]. It is found that 
in general the temperature profile bends towards the surface of 
the cylinder as the aspect ratio of the cylinder increases. The 
variation of the velocity profile due to the increase of the aspect 
ratio is much more complicated, which deforms towards the 
cylinder surface, with a decrease of the maximum velocity.   

In the present study, the Rac dependence of boundary layers on 
the curvature effect of isothermally heated vertical cylinders is 
studied by direct stability analyses. To obtain insight into the 
mechanism resulting in the surface curvature effect of surface 
on Rac, the kinetic energy balance of the boundary layer is also 
examined.  

     

Problem Formulation 

Under consideration is the steady-state natural convection 
boundary layer developed adjacent to the outer surface of an 
isothermally heated vertical cylinder. The physical system 
considered in this study is schematically depicted in figure 1(a), 
in which the radius of the cylinder is R0 and the height is H. The 
thermal and velocity boundary layers adjacent to the cylinder 
surface are characterised by the Rayleigh number Ra, the 
Prandtl number Pr, and the aspect ratio of the cylinder A, which 
are defined as follows. 
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where g and ∆T are the gravitational acceleration ( m/s2) and 
the temperature difference (TW  ̶ T∞, K) between the isothermal 
surface and the ambient respectively; β, ν and κ are the thermal 
expansion coefficient (K-1), the kinematic viscosity (m2/s1) and 
the thermal diffusivity (m2/s1) of the working fluid at the 
reference (ambient) temperature. 
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Figure 1. (a) Schematic of a natural convection boundary layer on a 
heated vertical cylinder; and (b) the computational domain adopted for 
numerical simulations.  

Numerical Method 

Governing Equations 

The boundary layer under consideration is developing adjacent 
to an isothermally heated vertical cylinder of radius R0. The 
computational domain adopted here is of dimensions R∞×H, 
where H is the height of the vertical cylinder and R∞ is the width 
in the radial direction, as sketched in figure 1(b). In this study, 
R∞ is chosen to be about 10 times the estimated thickness of the 
viscous boundary layer to ensure the far-field boundary 
condition is satisfied. A similar treatment is adopted in [8]. 
Similar to the treatments used in [9], the computational domain 
is extended at the top and bottom by Ht=Hb=0.1H respectively 
to minimize the effects of the end boundaries.  



The convective flow under consideration is described by the 2D 
Navier-Stokes and energy equations with the Boussinesq 
approximation. The dimensionless form of the equations in a 
cylindrical coordinate system is written as:  
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where r, z, u, v, τ, p and θ are respectively the dimensionless 
forms of R, Z, U, V, t, P and T, which are made dimensionless 
by 
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u and v are the velocity components in the radial (r) and the 
vertical (z) directions; τ, p and θ are the time, pressure and 
temperature. V0=κRa1/2/H is the characteristic velocity of a 
natural convection boundary layer for Pr>1. 
 
The fluid in the computational domain is initially stationary and 
isothermal at a temperature θ=1. At time τ=0 the temperature of 
the surface at r=r0 is raised to θ=1 and maintained afterwards. 
Open boundary conditions are applied to the top and far field 
boundaries. The bottom boundary of the extended 
computational domain is rigid, no-slip and adiabatic. Similarly, 
the downward extension of the cylinder surface at r=r0 is 
assumed to be rigid, no-slip and adiabatic. 
 
To introduction numerical perturbations into the flow, 
temperature perturbations are prescribed as: 
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where rand(0,1) is a random number generator, generating 
statistically uniformly distributed random numbers between 0 
and 1. Ap is the perturbation amplitude, which is chosen to be 
Ap = 5 for the present study. It is worth clarifying that the critical 
Rayleigh number Rac to be determined in this study is Ap 
independent.    

Numerical Method 

In the present study, the discretized governing equations are 
solved using a finite-volume based fractional pressure-velocity 
coupling method. The QUICK third-order upwind scheme [10] 
is adopted for the advection terms. The standard second-order 
central-differencing schemes are used for viscous, pressure 
gradient, and divergence terms. The second-order backward 
scheme is applied to time discretization. The code has been 
widely used and validated for buoyancy dominated boundary 
layer flows [8, 11-13]. The mesh (90(r) ×600(z)) is constructed 
with concentrated grids in the proximity of the curved surface 

and have a 0.3~2% linear stretching in the radial (r) direction, 
whereas the grids are uniform in the vertical (z) direction.  

Results and Discussion 

Prior to the discussion of results, it is worth clarifying that the 
dependence of the critical Rayleigh numbers to be determined 
in this study is perturbation amplitude independent. Figure 2 
shows the streamwise profile of uRMS / Ap obtained with three 
different perturbation amplitudes. It is seen in the figure that the 
region where amplification onsets is almost identical for the 
cases with Ap=5 and Ap=2.5. The critical Rayleigh number is 
determined to be 1.17×106 and the critical position is indicated 
by the red dotted line. The selection of Ap in this study is 
therefore appropriate.  

     

Figure 2. Dependence of critical Rayleigh number on numerical 
perturbation amplitude. A=0.  

To obtain insight into the curvature effect on the critical 
Rayleigh number for the instability of the natural convection 
boundary layers, the streamwise profiles of the standard 
deviation of the streamwise velocity uRMS and temperature θRMS 
are shown in figure 3. The velocity and temperature are 
obtained in the quasi-steady state of the boundary layer flow.  

It is seen in figure 3 that the evolution of momentum and 
thermal disturbances varies significantly as the aspect ratio A 
increases from 0 to 2400. The streamwise profiles of uRMS and 
temperature θRMS suggest that the amplification of the 
momentum and thermal disturbances reduces as the aspect ratio 
A increases.  
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Figure 3. Streamwise profiles of root-mean-square of (a) streamwise 
velocity components and (b) temperature.  
 
To determine the critical Rayleigh number Rac, the momentum 
and thermal fluctuations at streamwise neighbouring locations 
are compared, as indicated by the red dotted line. It is worth 
noting that the results for the streamwise location z<0.05 are not 
shown, where perturbations are dominant.   
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Figure 4. Streamwise amplification and decaying of (a) momentum and 
(b) temperature. 
 

It is seen in figure 4 that the critical position for the flat plate 
(A=0) case is determined to be the location where 1

RMS RMS/ 1z zu u 

or 1
RMS RMS/ 1z z   , which is z=0.14 and z=0.19 from the 

momentum and thermal curves, as indicated by the horizontal 
dotted lines. An earlier beginning of momentum transition than 

that of the thermal transition was also observed by Jaluria et 
al.[14], which suggests that there may exist ‘different’ critical 
Rayleigh numbers Rac for momentum and thermal field of a 
boundary layer, although the difference is not remarkable. 
Based on the critical position z=0.14, the critical Rayleigh 
number Rac is calculated to be 1.17×106, which is in good 
agreement with the linear stability result Rac=1.27×106 [1].        

For the cylinder case of A=2400, the critical position is 
determined to be z=0.57 and z=0.53 from the momentum and 
thermal curves, respectively. The critical position is 
consistently and significantly delayed comparing to that 
determined in the flat plate case. Based on the critical position 
z=0.57, the critical Rayleigh number Rac is calculated to be 
7.13×107. 

(a) 

(b) 

Figure 5. Kinetic energy balance (a) flat plate case and (b) cylinder case 
of A=2400. Results for y=0.5. SP, BP and DIP denotes shear production, 
buoyancy production and dissipation, respectively. The unit of SP, BP 
and DIP is m2/s3.  
 
Figure 5 shows the kinetic energy balance for the flat plate case 
and the cylinder case of A=2400, respectively. The shear 
production (SP), buoyancy production (BP) and dissipation 
(DIP) are calculated as below: 
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where the prime symbols denote fluctuation quantities and 
symbols with an overbar denote mean values. 2i  is the 
kronecker delta. It is worth noting that the SP, BP and DIP are 
calculated dimensionally.  

 



 

Figure 6. Ratio of production terms to the dissipation term. Positive 
values suggest the boundary layer being unstable. Results for z=0.5. 

It is seen in figure 5 that the buoyancy production of the flat 
plate case is orders of magnitude larger than that of the cylinder 
case. To better understand the ratio of production to dissipation, 
the quantity ( ) / 1SP BP DIP  is examined and shown in figure 

6. A positive value of the quantity suggests that the boundary 
layer is unstable. Accordingly, it is seen in the figure that for 
the examined position the boundary layer of the flat plate case 
is much more unstable than that of the cylinder case. This 
characteristic also presents at other locations.  
 

 

 

Figure 7. Dependence of the critical Rayleigh number Rac on the aspect 
ratio A of the cylinder. 

The critical Rayleigh numbers Rac for the cylinder cases of A = 
240, 480 and 960 are obtained by the method illustrated in 
figure 4. The dependence of the critical Rayleigh number Rac 
on the aspect ratio of the cylinder is shown in figure 7. The 
critical Rayleigh number of the flat plate case can be recognised 
as the cylinder case of an infinite radius, that is A ~ 0. This 
critical Rayleigh number is in a good agreement with the 
theoretical value obtained by the linear stability analysis [1].  

It is seen in the figure that the critical Rayleigh number Rac 
depends linearly on the aspect ratio A linearly. As the aspect 
ratio A increases, that is the curvature of the cylinder becomes 
more significant, the critical Rayleigh number Rac increases and 
the boundary layer over the cylinder is more stable.      

Conclusions 

The curvature effects of isothermally heated vertical cylinders 
on the critical Rayleigh number Rac of natural convection 
boundary layers (Pr=7) are investigated by direct stability 
analyses (DSA). The aspect ratios of cylinders are 
A=240,480,960 and 2400. It is found that as the aspect ratio of 
the cylinder increases, the boundary layer over the cylinder 
becomes more stable, which results in a larger critical Rayleigh 
number. The mechanism contributing to this variation may be 
associated with the relatively low ratio of energy production to 

dissipation. A linear dependence of the critical Rayleigh 
number Rac on the aspect ratio A is also revealed.  
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