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Abstract

This paper examines anisotropy in the Richtmyer-Meshkov in-
stability (RMI) for a given three-dimensional, narrowband, mul-
timodal perturbation, and whether anisotropy persists at later
times when the mixing layer is tending towards self-similar
growth. In particular, the degree to which viscous dissipa-
tion and molecular diffusion affect anisotropy is investigated by
comparing the results of a low Reynolds number direct numer-
ical simulation (DNS) with a high Reynolds number large eddy
simulation (LES) for the same initial condition and numerical
framework, as well as a LES of a quarter-scale initial condi-
tion, implemented in the University of Sydney high-order finite-
volume code FLAMENCO. Various measures of anisotropy are
considered, including ratios of the components of domain inte-
grated turbulent kinetic energy and enstrophy, ratios of direc-
tional Taylor-scale Reynolds numbers and Lumley’s anisotropy
tensor. The results from the standard LES case show that the
flow field is persistently anisotropic in the shock-parallel direc-
tion at the latest time considered, while comparisons with the
DNS results show that anisotropy is moderately increased at low
Reynolds number although tending towards the high Reynolds
number results at later times. For the quarter-scale LES it can be
seen that at very late times the layer is relaxing towards isotropy
although a significant amount of anisotropy remains at the latest
time, indicating that any eventual return to isotropy occurs over
a very long time scale.

Introduction

The Richtmyer–Meshkov instability (RMI) occurs when a per-
turbed interface separating two materials is impulsively acceler-
ated, typically by a shock wave [12, 8]. The instability evolves
due to the misalignment of density and pressure gradients at
the interface, referred to as the deposition of baroclinic vortic-
ity. This deposition leads to a net growth of the interface and
the development of secondary Kelvin-Helmholtz instabilities,
which drive the transition to a turbulent mixing layer. Unlike
the closely related Rayleigh–Taylor instability, RMI can be in-
duced for both light-heavy and heavy-light configurations, and
in both cases the initial growth of the interface is linear and can
be described by analytically. However, as the perturbation am-
plitudes become large with respect to the wavelength the layer
growth enters the nonlinear regime, whereby numerical simu-
lation is required to calculate the subsequent evolution. For a
comprehensive and up-to-date review of the literature on RMI,
the reader is referred to Zhou [24, 25].

The understanding of mixing due to RMI is of great impor-
tance in areas such as inertial confinement fusion (ICF) [3],
supernovae dynamics [2] and supersonic combustion [22]. In
all of these applications, quantitative experimental data is dif-
ficult to obtain, therefore gaining an understanding of the un-
derlying physics relies to a considerable extent upon the use
of numerical simulation. Furthermore, given the broad range
of scales involved in practical applications (such as those men-
tioned above), as well as the fact that often other physics must
be considered such as radiation or chemical/nuclear reactions,
it is currently necessary to model the effects of mixing and

turbulence to some degree in order to maintain computational
tractability. This motivates the use of high-fidelity simulation
techniques such as large eddy simulation (LES) and direct nu-
merical simulation (DNS) for fundamental problems with the
purpose of increasing the understanding of turbulent mixing and
guiding the development of Reynolds-Averaged Navier-Stokes
(RANS) and other reduced-order modelling techniques.

Previous numerical studies of this instability have demonstrated
the ability of large eddy simulation (LES) algorithms to predict
mixing at late time due to turbulent stirring in the high Reynolds
number limit, [23, 17, 7, 19], with good agreement shown in
various integral measures such as width and mixedness across
a number of different codes [15]. With regards to ICF, recent
simulations have indicated that the capsule hot spot is very vis-
cous due to the high temperatures involved, hence the assump-
tion of turbulent conditions in the hot spot is likely incorrect
as small-scale mixing should be viscously damped [21]. It is
also possible that ablator material is spread through the hotspot
via molecular diffusion [3], which motivates the use of numer-
ical simulation techniques such as DNS in order to explore the
effects of these molecular transport processes (i.e. Reynolds
number effects) on the evolution of RMI as well as to gain a
better understanding of transitional behaviour.

An area where there is less clear agreement between various
numerical as well as experimental studies is on the level of
anisotropy that persists after the passage of the shock wave, an
important consideration for the development of models for these
types of flows. Tritschler et al. [20] found that for low Reynolds
number DNS of RMI at three different Mach numbers the decay
rates of turbulent kinetic energy (TKE) and enstrophy, as well as
probability density functions of the velocity and its longitudinal
and transverse derivatives, are in good agreement with values
for decaying isotropic turbulence [20]. However various high
Reynolds number LES studies simulating RMI induced mixing
layers to late time have shown that there is persistent anisotropy
in the TKE components, with the component in the shock direc-
tion typically having 30-60% higher energy [17, 10, 15]. Simi-
lar observations have also been made experimentally [11].

Other studies have used different measures of isotropy, for ex-
ample Lombardini et al. [7] considered an anisotropy measure
of the velocity power spectra for a range of different Mach num-
bers and found that at late time there was substantial, although
not complete, isotropisation particularly at higher wavenumbers
[7]. The same study also used the ratio of Taylor-scale Reynolds
numbers (which is based on both TKE and dissipation rate) as
an anisotropy measure, and found that this ratio tended to a
value of ≈ 1.5 at late time for all Mach numbers considered. It
is also likely that the level of anisotropy depends on initial con-
ditions, as evidenced by gas curtain experiments [1] and studies
that have looked at the effects of different RMS slopes of the
initial interface such as [4], which quantified anisotropy using
the diagonal components of Lumley’s anisotropy tensor. Mo-
haghar et al. [9] also investigated anisotropy using this measure
and found that significant anisotropy exists prior to reshock in
both single-mode and multi-mode cases.



Given the differing results and conclusions with regards to
anisotropy in RMI induced mixing, the focus of the present
study is to compare four measures of anisotropy for the results
of three numerical simulations; a high Reynolds number im-
plicit LES (ILES) and a low Reynolds number DNS of the same
initial condition, as well as an ILES of a scaled version of the
initial condition so as to allow for a much later non-dimensional
time to be simulated. The ILES results have been documented
previously in [15] (although not for all of the quantities consid-
ered here), whilst the DNS results are entirely new.

Problem Description

The equations solved are the compressible multicomponent
Navier-Stokes equations (Euler equations in the case of ILES),
which govern the behaviour of mixtures of miscible gases [6].
All cases presented here use the ideal gas equation of state, with
Newton’s law of viscosity, Fourier’s law of conductivity and
Fick’s law of diffusion used to model molecular transport in the
DNS. Note that the enthalpy flux, which arises due to changes
in internal energy due to mass diffusion, must also be included
in the DNS in order to correctly calculate the temperature of the
mixture.

The governing equations are solved using the University of Syd-
ney code Flamenco, which employs a Godunov-type method of
lines approach in a structured multiblock framework. Spatial
reconstruction of the inviscid terms is performed using a fifth
order MUSCL scheme [5], augmented by a modification to the
reconstruction procedure to ensure the correct scaling of pres-
sure and velocity and therefore reduced numerical dissipation
at low Mach number [16]. The inviscid flux component is then
calculated using the HLLC Riemann solver [18], while the vis-
cous and diffusive terms present in the DNS are computed us-
ing second order central differences. Temporal integration is
achieved via a second order TVD Runge–Kutta method [13].
This numerical algorithm has been used extensively for simula-
tions compressible turbulent mixing problems, including single
shock and reshocked RMI [17, 14, 15].

The initial condition used for all simulations here comes from
a recent study of the late-time behaviour of the Richtmyer–
Meshkov instability by eight independent LES algorithms [15].
The DNS results are for the standard problem from this study
where the initial condition consists of a material interface sep-
arating two fluids containing a narrowband perturbation with
length scales ranging from L/8 to L/4 (L is the cross section of
the domain). The interface has an initial thickness given by an
error function profile with a characteristic width of L/32. The
initial modes are specified so as to have a constant power spec-
trum with an overall amplitude of 0.1λmin. Two sets of ILES
results are presented here, one for this same initial condition
and the second for an initial condition where the initial length
scales are a quarter of the size of those in the standard problem,
allowing the simulation to be run to much later non-dimensional
time with improved statistical fidelity. The mode amplitudes
and phases are defined by deterministic random numbers that
are constant for all grid resolutions considered, allowing for a
grid refinement study to be performed. Further details on the
derivation of the initial perturbation can be found in Thornber
et al. [17].

The computational domain is Cartesian, with dimensions x×
y× z = 2.8π× 2π× 2π m3 and periodic boundary conditions
are used in the y and z directions, with outflow boundary condi-
tions used in the x direction. The initial mean positions of the
shock and the interface are x= 3.0 m and x= 3.5 m respectively
and the initial pressure of both fluids is 100 kPa. The evolution
of the interface is solved in the post-shock frame of reference

(∆u = −291.575 m/s) and the shock Mach number is 1.8439,
equivalent to a four-fold pressure increase. The initial densi-
ties of the two fluids are 3 and 1 kg/m3 respectively and the
post-shock densities are 5.22 and 1.8 kg/m3. Table 1 gives the
thermodynamic properties for both the heavy and light fluids,
which are constant throughout the entire domain.

Property Heavy Fluid Light Fluid
Molecular weight (Wi) 90 g/mol 30 g/mol

Ratio of specific heats (γi) 5/3 5/3
Dynamic viscosity (µi) 0.1 kg/m/s 0.1 kg/m/s

Prandtl No. (Pri) 1.0 1.0
Schmidt No. (Sci) 1.0 1.0

Table 1: Constant thermodynamic properties of the heavy and
light fluids. Note: µ, Pr and Sc are for the DNS only.

Four different measures are used to quantify the anisotropy of
the mixing layer as it evolves in time. The first is the ratio of
components of Favre-avergaed turbulent kinetic energy, which
is given by:

TKE(t) = TKX+TKY+TKZ =
∫ 1

2
ρu′′i u′′i dV (1)

where u′′i = ui− ũi and ũi = ρui/ρ is a Favre average. A plane
average taken over the homogeneous directions is used to cal-
culate the ensemble average φ of a quantity φ. The ratio is then
given by:

TKR =
2×TKX

TKY+TKZ
(2)

where a value of TKR = 1 corresponds to complete isotropy of
the turbulent kinetic energy components. The second measure
used is similar to the first but with components of enstrophy
used in place of components of TKE. The enstrophy is defined
as:

Ω(t) = Ωx +Ωy +Ωz =
∫

ρωiωidV (3)

where ωi is the vorticity. As with the first measure, a value of
2×Ωx/(Ωy +Ωz) = 1 corresponds to complete isotropy of the
enstrophy components. The third measure is a variable-density
variant of Lumley’s anisotropy tensor, defined by:

bi j =
〈ρu′′i u′′j 〉
〈ρu′′k u′′k 〉

− 1
3

δi j (4)

where 〈. . .〉 indicates a plane average. The diagonal elements of
the tensor are bounded between−1/3 and 2/3, with bii =−1/3
corresponding to no turbulent kinetic energy in the ith direc-
tion and bii = 2/3 corresponding to all of the turbulent kinetic
energy in that direction, while a value of 0 indicates isotropy.
Given that the tensor is calculated for each y− z plane, the re-
sults presented here are averaged over all y−z planes that satisfy
the following condition:

4〈Y1〉〈Y2〉 ≥ 0.9 (5)

where Yi is the mass fraction of fluid i. Planes that satisfy Equa-
tion 5 are referred to as the inner mixing zone [19]. The last
measure considered here is the ratio of directional Taylor-scale
Reynolds numbers, defined by:

Reλi
=

〈u′′2i 〉

〈ν〉
√
〈
( ∂u′′i

∂xi

)2〉
(6)

Defining the transverse Taylor-scale Reynolds number as
Reλyz

= (Reλy
+ Reλz

)/2, the ratio of interest is given by



Reλx
/Reλyz

where a value of 1 corresponds to isotropy. As
with the anisotropy tensor, the results presented here are for
Reλx

/Reλyz
averaged over the inner mixing zone.

Results

The evolution of the ratio of TKE components in non-
dimensional time (defined as τ = tẆ0/λ̄, see [15] for further
details) is shown in Figure 1. In the standard case, after an ini-
tial peak due to the compression by the shock there is a second
peak in both the DNS and ILES data at time τ = 0.1845, with
values of 5.113 and 4.573 respectively. Beyond this peak there
is a rapid decrease in anisotropy that flattens out into a slow de-
cay, with the DNS data appearing to be converging to the ILES.
At the latest point in time the values of this anisotropy measure
are 1.701 and 1.423 for the DNS and ILES respectively, with the
ILES data seemingly approaching an asymptotic value. How-
ever, by examining the behaviour at much later non-dimensional
time using the quarter-scale ILES data, it can be observed that
the results for the standard case are still in some initial transient
stage and are not approaching a steady state. For times later than
τ ≈ 40 there is a slow but steady decay in anisotropy of TKE
components, and although at the latest time there is still 33.6%
more fluctuating energy in the x-direction this value is still de-
creasing, presumably asymptotically approaching isotropy.
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Figure 1: Ratio of turbulent kinetic energy components. Left:
Standard case. Right: Quarter-scale case.

In a similar vein as Figure 1, Figure 2 shows the evolution of
the ratio of enstrophy components with non-dimensional time.
During the initial compression of the layer this ratio is close
to 0 as the majority of the vorticity that is deposited baroclin-
ically is confined about the transverse directions (i.e. rotation
normal to the plane). The reason for the sharp jump in this ratio
at time τ = 0.2091 is due to the shock exiting the domain, at
which point there is a large drop in Ωy and Ωz. Interestingly
in the standard case the ratio of enstrophy components peaks
at a value greater than 1 before declining, this occurs at time
τ = 0.8365 for the DNS and time τ = 0.5535 for the ILES. The
behaviour after this point is also qualitatively different, with the
ILES data asymptoting towards a value of 1 whereas the DNS
data is continuing to decrease below 1 at the latest time consid-
ered. This is due to the x-direction component of enstrophy hav-
ing a greater decay rate than the transverse components at late
times in the DNS. For the later non-dimensional times simulated
in the quarter-scale ILES, the ratio of enstrophy components is
steadily approaching 1 (the final value is 0.9870), indicating an
eventual return to isotropy.

Figure 3 shows the diagonal elements of the anisotropy ten-
sor while Figure 4 shows the ratio of Taylor-scale Reynolds
numbers, both averaged across the inner mixing zone, as they
evolve in time (note DNS data is the solid line and ILES data
is the dashed line). The trends observed here are almost iden-
tical to those observed for the ratio of TKE components; after
the high anisotropy at compression there is a steady decrease in
anisotropy towards what appears to be a steady-state, with the
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Figure 2: Ratio of enstrophy components. Left: Standard case.
Right: Quarter-scale case.

DNS data close to converging to the ILES data at the end of the
standard case. The results of the quarter-scale case show that
there is an continual return towards isotropy that occurs over a
very long period of time. It is useful to compare the values of
these two measures with the values for the ratio in TKE com-
ponents, as this will bring greater insight to the results of pre-
vious papers where only presented a single measure has been
presented. For the latest time considered in the quarter-scale
case the ratio of TKE components is 1.336, which corresponds
to a ratio of Taylor-scale Reynolds numbers of 1.281 and val-
ues of 0.0536, -0.0287 and -0.0249 for the respective diagonal
components of the anisotropy tensor.
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Figure 3: Diagonal elements of the anisotropy tensor. Left:
Standard case. Right: Quarter-scale case.
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Figure 4: Ratio of Taylor-scale Reynolds numbers. Left: Stan-
dard case. Right: Quarter-scale case.

Conclusions

Anisotropy in the narrowband RMI has been examined by com-
paring four different measures of anisotropy for three separate
simulation databases, an ILES and a DNS of the same nominal
case as well as an ILES of a quarter-scale version of the same
case to evaluate the behaviour at much later non-dimensional
time. The results show that anisotropy is moderately increased
at low Reynolds number initially, prior to an apparent return to
the high Reynolds number limit at later times. At very late time
there is a definite trend towards isotropy although this is not
achieved within the period of time considered in the simulation,



indicating that the narrowband RMI is persistently anisotropic
over a very large time scale. These results may have impor-
tant ramifications for models of these flows that assume isotropy
over a time scale on the same order as that considered here.
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