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Abstract

Investigating the vortex-induced vibrations (VIV) of a sphere
offers us not only the opportunity to better understand funda-
mentals of fluid-structure interaction, but also to develop prac-
tical control approaches of VIV. In this study, we impose high-
frequency rotary oscillations on a sphere as a control method to
disrupt large-scale vortex formation in the wake.

The effects of rotary oscillation frequency and amplitude were
first investigated to gain an understanding of vortex suppres-
sion mechanisms and to define the bounds of open-loop control
effectiveness. It was found that the effects of high-frequency
rotary oscillations varied across the range of vibration modes
investigated. For the mode II branch, optimal tuning of the os-
cillation frequency resulted in an 84% reduction in VIV ampli-
tude. Subsequently, an attempt was made to further suppress
VIV by implementing a closed-loop control system.

Introduction

Vortex-induced vibration (VIV) of cylinders and spheres occurs
commonly and is often associated with detrimental structural
effects. As such, the phenomenon has been extensively studied.
A broad literature base details the effects of VIV on cylinders
and spheres from both practical and fundamental perspectives.
For both these geometries, vibration occurs due to a resonance
between the fluid forces acting on the body, caused by the vortex
shedding, and the natural frequency of the system. From a prac-
tical perspective, circular cylinder structures are more prevalent.
Offshore oil platforms, cables, and circular towers may all ex-
perience VIV under certain operating conditions. Reviews by
Williamson & Govardhan and Bearman [1, 16] reveal in detail
the mechanisms contributing to VIV of cylinders. For spheres,
the practical applications seem more limited, although there are
still examples to be found. Krakovich et al. [7], Lee et al. [8]
and Behara & Sotiropoulos [3] have revealed in their inves-
tigations of vibrating spheres that complex three-dimensional
wakes initiate and sustain the oscillatory body motion. Here
however, we are interested in the problem from a fundamental
perspective. The sphere is a generic three-dimensional proto-
type and thus it offers the opportunity to investigate the funda-
mental effects of three-dimensionality on fluid-structure inter-
actions.

Due to the practical importance of VIV, extensive research has
been conducted to develop control methods to reduce VIV of
structures. For cylinders, techniques such as fluid forcing, wake
control cylinders, and body rotation have been effectively em-
ployed to suppress structural vibration [2, 4, 12, 15]. On the
other hand, however, there has been much less work on VIV
control of spheres. van Hout et al. [14] used acoustic control to
either suppress or amplify the vibration response of a tethered
sphere.

In the present paper, we examine the effect of two distinct meth-
ods of rotary oscillation on the VIV of a sphere. Firstly, high-
frequency rotary oscillations, approximately one order of mag-
nitude above the vortex shedding frequency, are implemented.
The aim of this rotation setting is to disrupt the large-scale vor-

tex formation in the wake through interaction with small-scale
flow structures close to the body, in order to suppress VIV with
minimal energy input. Secondly, a closed-loop proportional
controller is implemented using the sphere displacement as the
feedback reference signal. Sareen et al. [10] showed that the
VIV response could be significantly suppressed by constant ro-
tations imposed on a sphere. By using a closed-loop controller,
the direction of rotation can be optimised over a single vibration
cycle, providing potential performance benefits.

The experimental methodology is presented below. This is fol-
lowed by the section of results on the open-loop control method.
Finally, the conclusions are drawn. It is planned that the re-
sults for closed-loop control will be presented at the 21st Aus-
tralasian Fluid Mechanics Conference.

Experimental methodology

The investigation was conducted in the free-surface water chan-
nel of the Fluids Laboratory for Aeronautical and Industrial
Research (FLAIR) at Monash University. The water channel
has a working section of 600 × 800 × 4000 mm. A 70 mm di-
ameter sphere, which was precision-machined from Renshape
460, was mounted by a 3 mm rod to a servo motor (Maxon Mo-
tor, EC-max 4-pole 22, equipped with a rotary encoder with a
resolution of 3600 counts per revolution). The servo motor was
mounted to a linear air-bearing rig that constrained the sphere
to move with one degree of freedom transverse to the oncoming
flow. Therefore, the governing equation of motion is given by

mÿ+ cẏ+ ky = Fy, (1)

where m is the total oscillating mass, c is the structural damping
factor, k is the spring constant, y is the body displacement, and
Fy is the transverse fluid force (the transverse lift).

Details of the experimental setup can be found in articles by
Zhao et al. [17] and Sareen et al. [10]. A schematic view of the
system is shown in figure 1, which illustrates key parameters of
the fluid-structure system. The top of the sphere was immersed
one sphere diameter beneath the surface. The rotation axis of
the sphere was perpendicular to the free surface. The servo mo-
tor was used to rotate the sphere with a sinusoidal rotation pro-
file. Table 1 details key non-dimensional parameters used in
this study. The parameters relating to the rotary oscillations are
discussed below.

Equation 2 defines the rotation profile of the sphere and intro-
duces the two parameters used to vary the rotary oscillations,
namely: rotation amplitude (Ω0) (peak angular velocity); and
forcing rotation frequency ( fr). These two parameters are nor-
malised as per Equations 3 and 4, and referred to as the rotation
ratio and forcing frequency ratio respectively.



Figure 1: Schematic of the experimental set-up. The sphere
is constrained to one degree of freedom transverse to the free-
stream flow. D is the sphere diameter; U is the free-stream ve-
locity; c is the structural damping factor; k is the spring con-
stant; m is the total oscillating mass; Ω0 is the angular veloc-
ity; Fx and Fy are the streamwise (drag) and the transverse (lift)
force components acting on the body, respectively.

Amplitude Ratio A∗ A
D

Damping Ratio ζ
c

2
√
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Reduced Velocity U∗ U
fnwD

Mass Ratio m∗ m
md

Table 1: Non-dimensional parameters. A is the structural vibra-
tion amplitude; D is sphere diameter; m is the total oscillating
mass; ma is the added mass, defined by ma =CAmd , where CA is
the added-mass coefficient (0.5 for a sphere); c is the structural
damping factor; k is the spring constant; U is the free-stream
velocity; fnw is the natural frequency of the system in quiescent
water; md is the mass of the displaced fluid.

Ω = Ω0 sin(2π frt) (2)

αr
∗ =

DΩ0

2U
(3)

fr∗ =
fr

fnw
(4)

Sphere oscillations were measured using a linear encoder
(RGH24, Renishaw, UK) with resolution of 1 µm at a sampling
rate of 100 Hz. Each dataset consisted of at least 80 vibration
cycles.

The mass ratio of the system, defined as the ratio of the mass
of the system (m) to the displaced mass of the fluid (md), was
m∗ = m/md = 10.1. The structural damping and natural fre-
quency of the system in quiescent water were measured to be
ζ = 4.22× 10−3 and fnw = 0.267 Hz respectively. The free-
stream velocity was varied from 0.14 ms−1 to 0.30 ms−1, cor-
responding to a Reynolds number range of 4× 103 ≤ Re =
UD/ν ≤ 2.2× 104, with ν denoting the kinematic viscosity of
the fluid. The reduced velocity range was 3 ≤ U∗ ≤ 17. The
rotation ratio was set to αr

∗ = 0.1 for the investigation. The
forcing frequency ratio was varied from 5≤ f ∗r ≤ 35. The upper
limit was due to torque limitations of the servo motor. Table 1

Figure 2: Amplitude response of the sphere for no rotation (blue
squares) and with imposed rotary oscillations (red circles). The
results for rotary oscillations show the maximum reduction in
amplitude response of the sphere across the range of imposed
forcing frequency ratios.

details the non-dimensional parameters used in this investiga-
tion.

To implement the closed-loop proportional controller, Beckhoff
Automation hardware and corresponding software, TwinCat 3,
was used in conjunction with a desktop computer. The system
consisted of a coupler (EK1100, Beckhoff Automation) to con-
nect the the hardware with the desktop computer, a digital input
(EL1124, Beckhoff Automation) to record sphere displacement,
and a Maxon motor controller (MAXPOS 50/5, Maxon Motors)
to control sphere rotation. The real-time sampling rate of the
system was 4kHz. The proportional controller consisted of a
single gain block that controlled sphere rotation in proportion
to the normalised sphere displacement.

Results

The experimental setup was first validated by comparing re-
sults obtained without rotary oscillations to those of Govardan
& Williamson [5] and Sareen et al. [10]. Overall, as shown
in figure 2, good agreement was found with the instigation of
vibrations and the subsequent trend of the response.

Rotary oscillations were then implemented at a range of reduced
velocities across the mode I, mode II, and transition to mode III
regimes. At each reduced velocity the frequency of the oscil-
lations was varied from 5 < fr∗ < 35. In the mode I regime,
the amplitude response of the sphere was insensitive to the ro-
tary oscillations. This observation is consistent with the results
of Sareen et al. [10, 11], who found that it was more diffi-
cult for constant and low-frequency rotary oscillations to affect
the amplitude response in the mode I regime, where the vortex
shedding frequency was close to the natural frequency of the
system.

Beyond the peak of the mode II regime, the rotary oscilla-
tions have an appreciable effect on the amplitude response. At
U∗ = 11.5, a reduction up to 34% is observed in the amplitude
response. After the peak of mode II, the rotary oscillations also
have a noticeable effect on the phase between the transverse lift
and the body displacement. At U∗ = 11.5, for the lowest forc-
ing frequency ratios examined, there is an increase of approx-
imately 25◦ in total phase. As the forcing frequency ratio is
increased, the total phase decreases to a minimum of 20◦ below
that of the non-rotary case.



Figure 3: The response of the sphere with imposed rotary oscil-
lations as a function of fr with αr

∗ = 0.1 at U∗ = 14. From top
to bottom, the figures show: the amplitude response; the power
spectra of body vibrations; the transverse lift force; and total
phase (phase between the body vibrations and fluid force). The
dotted line shows the result for no rotary oscillations.

As seen in figure 3, at U∗ = 14, there is a significant atten-
uation of the amplitude response (up to 81%) for a relatively
narrow band of forcing frequency ratios. There is a decrease
in total phase around fr∗ = 22, from 150◦ to 90◦, correspond-
ing directly to the attenuation of the vibration response. From
the frequency power spectra of the sphere displacement, it can
be seen that there is no obvious change in the body vibration
frequency across the fr∗ range investigated.

At the highest reduced velocity investigated, U∗ = 17, there
is a step decrease in the total phase corresponding to a step
change in the amplitude response (84% reduction) at fr∗ = 20
(figure 4). In conjunction with the phase variation observed at
U∗ = 14 and U∗ = 11.5, this observation suggests that, if we
were to implement a closed-loop control system, attempting to
manipulate the phase difference between the fluid force and the
body displacement would be more efficient than attempting to
directly reduce the magnitude of the fluid force itself.

For U∗ = 17, large scatter in the data can be observed for
very high forcing frequencies. Examining the time series of
the vibration response for this reduced velocity at select forc-
ing frequency ratios reveals a potential cause of this. Fig-
ure 5 shows sample time series of the sphere displacement at
fr∗ = 31. The vibration response is rapidly attenuated around
a non-dimensionalised time of 40 and remains minimal for a
period of approximately 15 vibration cycles. This phenomenon
appears to happen sporadically with no distinct peak in the fre-

Figure 4: The response of the sphere with imposed rotary oscil-
lations as a function of fr with αr

∗ = 0.1 at U∗ = 17. Refer to
figure 3 for further details.



Figure 5: Time series of sphere displacement at U∗ = 17,
fr∗ = 31, αr

∗ = 0.1. Time has been non-dimensionalised by
the sphere oscillation period.

quency spectra for these low-frequency pulsations. This sug-
gests that wake is characterised by two states: the first state
where the effect of the rotary oscillations dominates the system
and minimal vibrations occur; and the second state where the
rotary oscillations have minimal effect on the vortex shedding
process results in large vibrations.

Phase-averaged PIV data was acquired in the equatorial plane of
the sphere for select reduced velocities and forcing frequency
ratios. Where the vibrations were suppressed, there were no
observable major differences in the phase-averaged wake struc-
ture. This observation is inline with that of Tokumaru & Dimo-
takis [13], who found that the effect of high-frequency rotary
oscillations imposed on a fixed cylinder was primarily only ob-
servable in the shear layers separating from the body.

Sakamoto & Haniu [9] conducted their experiments and col-
lated past results for flow over a fixed sphere. They described
the existence of a low-mode Strouhal number associated with
wave-like motion of the wake, and a high-mode Strouhal num-
ber associated with the small-scale instability of the separat-
ing shear layer. Where a noticeable attenuation of the vibra-
tion response was observed in this investigation, at U∗ = 14
and U∗ = 17, the frequency of rotary oscillations were approx-
imately 6 - 12 times the low-mode, and 45% to 75% of the
high-mode, Strouhal numbers of the equivalent fixed body. It
is hypothesised that the rotary oscillations are interacting with
the separating shear layer in a manner that affects the period-
icity, timing, and perhaps to a lesser degree the strength of the
vortex shedding.

Conclusions

This initial investigation shows promise for suppression of VIV
of a sphere through sinusoidal rotation at low amplitude and
frequencies approaching that of the shear layer instability. It
was found that, with careful frequency selection, it was pos-
sible to substantially suppress VIV in the mode II and transi-
tion to mode III regimes. Where VIV was significantly sup-
pressed, the vibrations became less periodic and a reduction in
the total phase was observed. No major variations to the phase-
averaged wake structure were observed in the equatorial plane
of the sphere. It will be of interest in our further investigation
to utilise time-resolved PIV to reveal the effect of rotary oscil-
lations on the flow dynamics and to analyse the results of the
proportional controller.
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