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Abstract

This paper presents the recent development and testing of a
LBM-DEM model of fluid-particle systems which can predict
suspension rheology in the presence of conjugate heat transfer.
A total energy formulation of the dual-population thermal lat-
tice Boltzmann method (TLBM) has been extended to include
a model of temperature-dependent fluid viscosity. The TLBM-
DEM model was then applied to predict the rheology of a range
of non-Brownian suspensions in a process referred to as numeri-
cal rheometry. Isothermal results at high solid volume fractions
demonstrated a pronounced increase in relative viscosity. They
were also able to highlight the influence of particle friction on
suspension behaviour. The inclusion of temperature-dependent
fluid viscosity showed a reduced perturbation of the velocity
field due to the presence of particles in areas of thinner fluid.
Temperature profiles exhibited nonlinearity due to viscous heat-
ing stemming from increasing particle solid volume fraction,
which increased when conjugate heat transfer was allowed to
take place. In the future, this modelling work-flow will be ap-
plied to investigate temperature-dependent suspension transport
in a number of industrially-relevant flows.

Themes: Computational fluid dynamics; Multiphase and
particle-laden flows; Heat transfer.

Introduction

A significant body of research (see [5] for a recent review)
has been targeted at the rheological characterisation of non-
Brownian suspensions. Despite this, a number of important
phenomena are still poorly understood or subject to conjecture.
Whilst continuum models are commonly applied to simulate
moderately concentrated suspensions, they struggle to capture
the nonlinear behaviour that emerges close to maximum pack-
ing. In addition, continuum modelling with non-Newtonian and
or temperature-dependent fluids is significantly more compli-
cated than the Newtonian case, yet has received little attention
in the literature [5]. Complex particle suspensions exist in a
range of scientific and engineering contexts, from blood flow
to gas production (e.g. hydraulic fracturing fluids), and so im-
proved predictive models of the relevant phenomena are desir-
able.

Aside from empirical correlations and continuum approxima-
tions, computational approaches to model fully-resolved, non-
Brownian particle suspensions include Stokesian dynamics [2],
smoothed particle hydrodynamics (SPH) [21], and variations of
the finite element method [20]. In this work, however, direct
numerical simulation of suspensions (i.e. fully resolved mod-
elling) is performed using coupled lattice Boltzmann (LBM)
and discrete element (DEM) methods. Since the seminal work
of Ladd [8], this approach has been well documented in the lit-
erature. Coupled LBM-DEM modelling has the advantage of
being able to explicitly and simultaneously capture many rel-
evant phenomena at both the local and global scale, including
two-way hydrodynamic coupling [4], non-Newtonian rheology
[11], electrostatic [14] and electromagnetic [10] forces.

This paper extends recent work on thermal LBM-DEM suspen-
sions [12, 13] by incorporating a temperature field that facili-
tates the modelling of conjugate heat transfer and temperature-
dependent fluid viscosity. This is then applied to investigate the
effective viscosity of suspensions that feature both high solid
volume fraction and varying temperature gradients. These re-
sults are compared with relevant correlations from the literature.
This demonstrates that the modelling approach produces results
that are both valid and useful for the investigation of flows that
are industrially relevant (e.g. the transport of hydraulic fractur-
ing fluids in unconventional gas reservoirs).

Formulation of the TLBM-DEM Model

The LBM is a mesoscopic method that mimics the Navier-
Stokes equations at the macroscopic scale. Over that past three
decades, it has found wide application in areas such as vehicle
aerodynamics, porous media flows, and numerous multiphase
and multiphysics problems. The lattice Boltzmann equation,

fi(x+ ei∆t, t +∆t)− fi(x, t) = Ωi, (1)

describes the evolution of a set of particle distribution functions,
fi, via the processes of streaming and collision. The collision
term, Ωi, can take many forms, including variants with single
and multiple relaxation times (e.g. BGK, TRT, MRT) and en-
tropic formulations. Both the BGK,

Ω
BGK
i =−∆t

τ

[
fi(x, t)− f eq

i (x, t)
]
, (2)

and MRT,

Ω
MRT
i =−M−1SM
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fi(x, t)− f eq

i (x, t)
]
, (3)

collision operators are used interchangeably in this work. In the
former, τ is the relaxation parameter, which controls the rate at
which fi approaches its equilibrium value,

f eq
i = ωiρ

[
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3
c2 (ei ·u)+

9
2c4 (ei ·u)2− 3

2c2 (u ·u)
]
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in which ωi is a set of lattice-specific weights. In the latter, M
transforms the particle distribution functions to a vector of mo-
ments while S is a diagonal matrix of semi-independent relax-
ation times. In this work, a two-relaxation-time (TRT) version
[6] of the MRT collision operator is employed.

Spatial discretisation is performed using one of either the
D3Q15 and D3Q27 lattices. Density, ρ = ∑i fi, and momentum
flux, ρu = ∑i fiei, are calculated as the zeroth and first order
moments of fi, while pressure, p = c2

s ρ, is evaluated using an
equation of state. Here, cs = c/

√
3 is the fluid speed of sound

and c = ∆x/∆t is the lattice speed, where ∆x represents the lat-
tice spacing and ∆t the explicit LBM time step. Multiscale anal-
ysis of the governing equations provides, amongst other things,
the relationship between the kinematic viscosity,

ν =
1
3

(
τ− 1

2

)
∆x2

∆t
, (5)



the relaxation time, lattice spacing and time step. It is important
to note that these equations have been listed in physical units.

To capture the temperature field, the total energy formulation
proposed by Guo et al. [7] has been implemented along with an
expression for temperature-dependent viscosity. In this model
the quantity conserved by a second population, gi, is total en-
ergy such that ∑i gi = ρE. Here E = CT +(u ·u)/2, C is the
specific heat of the fluid, and T is the temperature. The com-
plete total energy model incorporates a number of forcing terms
that control the collision and relaxation of the respective popu-
lations. Only a simplified summary of these is presented here,
with the reader referred to the relevant literature [7, 12] for a
complete description. In the absence of body forces, the fluid
population possess the conventional equilibrium functions and
zeroth moment as stated above. In three dimensions, the ther-
mal population possesses an equilibrium of
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which is used with the relaxation equation of,

gi(x+ ei∆t, t +∆t)−gi(x, t) =−τ
−1
g
(
gi(x, t)−geq

i (x, t)
)

+
(

1− (2τg)
−1
)

∆tqi +
(

τ
−1
g − τ

−1
)

ZiΦi. (7)

Here Zi = ei ·u− (u ·u)/2, Φi = fi− f eq
i and qi = ωiρE/c2

s .

Similarly to viscosity and τ, τg is related to the thermal diffu-
sivity of the fluid α =

(
τg−1/2

)
(∆x2)/(3∆t). For a fluid with

temperature-dependent viscosity, Equation 5 can be used to cal-
culate the required local value of τ based on changing ν.

To capture conjugate heat transfer between disparate material
phases, the total energy population is used to capture the ther-
mal behaviour of both components. This requires modification
of populations crossing material boundaries to ensure that tem-
perature and flux are both conserved (as opposed to total en-
ergy, the naturally conserved quantity in this TLBM). The in-
terface condition proposed by Pareschi et al. [19] has been im-
plemented here to achieve this.

Particles are modelled as rigid spheres, with their soft-contact
interactions and kinematics governed by the discrete element
method. Hydrodynamic coupling with the surrounding fluid is
enforced with the partially saturated method (PSM) originally
proposed by Noble and Torczynski [17]. In this approach, the
LBE is modified as,

fi(x+ ei∆t, t +∆t)− fi(x, t) =−M−1SM(1−β)ΩMRT
i +βΩ

m
i ,

(8)

where β is a solid weighting function dependent on the local
solid volume fraction, γ, and Ωm

i is the PSM collision operator.
In this work, the superposition PSM collision operator is used,

Ω
m
i = f eq

i (ρ,us)− fi (x, t)+
(

1− ∆t
τ

)[
fi (x, t)− f eq

i (ρ,u)
]
,

(9)

is applied with a modified solid weighting function [22],

β =
γ∑b b(τ−1/2)b

(1− γ)+∑b b(τ−1/2)b , (10)

where b = 4 is taken as the summation index. This has been
shown [22] to significantly reduce the dependence of hydrody-
namic drag on the lattice viscosity (i.e. relaxation parameter).
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Figure 1: Comparison of temperature profiles computed by to-
tal energy and the commonly used passive scalar TLBMs for a
Couette flow with temperature-dependent viscosity. Both mod-
els generate the non-linear velocity profile accurately.

Modelling of Temperature-Dependent Viscosity

Verification of the developed TLBM model for flows with
temperature-dependent viscosity was conducted via comparison
to analytical solutions for a Couette flow with an applied tem-
perature gradient. Myers et al. [16] presented such solutions for
a fluid with viscosity changing through ν = ν0e−βT where ν0 is
a reference viscosity for T = 0 and β is a coefficient controlling
the viscosity change. In a normalised form, the velocity profile
is given as,

u(z) =
√

(2eβTm)/(βBr)
{

tanh
[
zΘ− tanh−1

Ψ

]
+Ψ

}
, (11)

and the normalized temperature profile by,

T (z) = Tm +β
−1ln

{
1− tanh2

[
tanh−1

Ψ− zΘ

]}
, (12)

where Θ =
√

(A2βBr)/(2e−βTm) and Ψ =
√

1− e−βTm . The

Brinkman number of the flow is Br = µ0U2
m/k∆T with k the

thermal conductivity of the fluid, Um the velocity of the mov-
ing upper wall (lower wall stationary) and ∆T the temperature
change between the walls (upper wall hotter). The terms Tm
and A are typically found numerically through application of
the boundary conditions at the upper wall at z = 1. In an exam-
ple of Br = 0.7 and β = 1.0, Figure 1 highlights that the current
total energy model is required to adequately capture the ana-
lytical temperature profile. The commonly used passive scalar
approach for TLBM (see e.g. [12]) is not able to resolve this,
however both approaches capture the velocity profile accurately.

Numerical Rheometry in a Periodic Shear Cell

A periodic shear cell rheometer was used to compare the
isothermal LBM-DEM model to empirical expressions [15, 1,
9] for suspension viscosity. The model domain was periodic in
the lateral x- and y-directions. Discrete element platens were
mapped to the z-boundaries, with the upper driven by either a
constant shear force or velocity and the lower kept static. In this
investigation, the rheometer was built with a height of 10 nom-
inal particle diameters. The particle size distribution featured a
mean radius of 100µm and a standard deviation of 10µm. The



models were run under both stress (15 Nm−2) and strain rate
(150 s−1) control. At the end of each simulation, the viscos-
ity ratio, ηr, was calculated as the quotient of the suspension,
ηe f f , and carrier fluid viscosities, η f . Figure 2 plots the re-
sults generated under stress control, showing good agreement
with the included empirical expressions. A particularly good
match was found with the model of Morris & Boulay [15] up to
a dense solid volume fraction of 55% (φ ≈ 0.55). Results ob-
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Figure 2: Isothermal viscosity ratio against solid volume frac-
tion when shear under a constant stress.

tained under strain rate control are plotted in Figure 3. With a
DEM friction coefficient of 0.1 for the top platen, good agree-
ment with the experimental results of Boyer et al. [1] was
achieved for φ< 0.4. However, the results deviated dramatically
at higher solid volume fractions. This was addressed by increas-
ing the driving platen’s friction coefficient to 0.5, mimicking the
textured platen (steel bars were attached to the top surface of
the rheometer) used in the experiments. This resulted in good
agreement up to φ ≈ 0.65, which is a result that is rarely seen
in the literature. Relative viscosity tests were also conducted
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Figure 3: Isothermal viscosity ratio against solid volume frac-
tion, highlighting the influence of friction coefficient.

with and without a fluid possessing temperature-dependent vis-
cosity. Figure 4 compares these outcomes: “TLBM 1” is at
T = 0 with νLBM = 1/6, whilst “TLBM 2” thins according to
νLBM = e−T /6, T = 1 is prescribed for the entire domain. These
are compared to three common correlations from the literature
[3, 18, 15]. In the “TLBM 2” case, particle motion is less in-
hibited by the fluid. This results in a greater apparent viscosity
of the suspension, especially with increasing solid volume frac-
tion. The general trends observed in the presented results are
consistent with the correlations. A shear cell model where the
upper and lower platens move at fixed velocities in opposite di-
rections was also been studied. Again, a fluid with temperature-
dependent viscosity was considered with the upper wall held
at T = 1 and the lower wall at T = 0. Figure 5 shows that as
φ increases from 0% to 37%, the non-linearity of both the ve-
locity and temperature profiles increases. The perturbation of

Solid Volume Fraction

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

R
e

la
ti
v
e

 V
is

c
o

s
it
y

1

2

3

4

5

6

7

TLBM 1

TLBM 2

Krieger-Dougherty

Eilers

Mooney

Morris-Boulay

Figure 4: Relative viscosity of suspensions with increasing
solid volume fractions. The “TLBM 2” result is for a fluid with
temperature-dependent viscosity (β = 1.0 and ν0,LBM = 1/6)
and a dimensionless temperature of T = 1. The lines represent
various isothermal correlations.

the velocity profile is reduced in the area of thinner fluid where
the flow is less disturbed by the particles. Minor viscous heating
caused the change in temperature profile. In Figure 6, conjugate
heat transfer has been allowed to occur by reducing the thermal
conductivity and specific heat of the solid phase by a factor of
three as compared to the fluid. Here the velocity profiles remain
largely unchanged but the viscous heating effect can be seen to
increase due to this reduction.

Conclusions

A TLBM-DEM model has been developed and applied to pre-
dict the effective viscosity of non-Brownian suspensions in the
presence of high solid volume fraction, temperature-dependent
viscosity, and conjugate heat transfer. It was shown that a to-
tal energy formulation of the TLBM is necessary to capture the
temperature field in the presence of varying viscosity. Numer-
ical rheometry results were in good agreement with some ex-
isting correlations, while appearing to invalidate others. Look-
ing forward, the transport of similar suspensions will be investi-
gated in complex flow configurations, such as hydraulic fracture
networks in unconventional gas reservoirs.
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