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Abstract 

The phenomena of sinusoidally oscillatory flow around a 
stationary circular cylinder are very rich and are of great 
importance to both practical engineering and fundamental 
studies. In this paper, two-dimensional (2D) numerical 
simulations are conducted for oscillatory flows around a 
circular cylinder. Drag crisis, which has been previously 
reported in unidirectional flows, is captured and the transition 
to turbulence on the cylinder surface is observed. The 
boundary layer transition is demonstrated by the pressure 
distribution on cylinder surface, along with the movements of 
stagnation point and separation point. 

Introduction  

The transition of plane-wall boundary layer in oscillatory flow 
has been the subject of many investigations for decades. One 
way of illustrating the laminar-to-turbulent transition is to 
display the friction coefficient as function of Reynolds number 

(in boundary-layer flows, ��� =
����

�
, where ��� is the 

maximum value of the free-stream velocity, � is the amplitude 
of the free-stream motion and � is the kinematic viscosity of 
the fluid). The bed-shear-stress experiences turbulence first 
just prior to the bed shear-stress reversal and then spreads 
towards smaller and smaller values of phase with increasing 
���. Jensen et al. [4] explained it as the adverse pressure 
gradient becomes relatively large and the velocity of near-bed 
fluid particles becomes relatively small at the phase value 
where bed shear stress reverses, so that a favourable 
environment forms for the initiation of turbulence. The 
boundary-layer properties change markedly with respect to 
��� near the bed, and the manner in the turbulence quantities 
change is exactly the same as in steady boundary-layer flows. 

In offshore engineering, circular shaped structures are used 
widely, such as pipelines, risers and pile foundations etc. Thus 
comprehensive researches on a circular cylinder in sinusoidal 
oscillatory flow or waves have been carried out during the past 
few decades. The two related dimensionless parameters are the 
Keulegan–Carpenter number (��) and Strokes number (�), 
which are defined as 

�� =
���

�
, � =

��

��
=

��

��
	                      (1,2) 

where �� =
���

�
, �� is the maximum oscillation velocity, T is 

the period of the oscillation, and D is the diameter of the 
cylinder. 

Oscillatory flow phenomena around a stationary circular 
cylinder are rather rich. These include acoustic streaming 
[7,8,14], Honji instability [2], dipole tubes, quasi-coherent 
structures, and transition to turbulence [11,12]. It is believed 
that every possible combination of KC and � is of great 
importance in both practical and fundamental study and 
touches certain unique aspects of time-dependent flows [13]. 

For relatively small KC and �, eight regimes of flow has been 
identified experimentally by Tatsuno and Bearman [16]. The 
Honji instability was studied by An [1] and the spacing 
between Hongji vortices have been investigated. Interestingly, 
from a physical point of view, Justesen [6] pointed out that as 
�� → 0, the flow amplitude will become so small with respect 
to � that the flow will not be able to feel the geometry of the 
wall below it, whether the wall is a cylinder surface or a flat 
plate, and the separation phenomenon would lead to 
simultaneous flow reversal over the entire cylinder surface in 
this extreme condition. 

For relatively large KC (up to 150) and �� (up to 7×105), 
Sarpkaya [9] presents the results of an extensive experimental 
investigation on smooth and sand-roughened circular 
cylinders. He concluded that, the drag coefficient undergoes a 
‘drag crisis’ and then rises to a nearly constant value within 
the range of Re and KC tested, while the inertia coefficient 
also undergoes an ‘inertia crisis’ at Re values corresponding to 
the ‘drag crisis’ and then asymptotically decreases. 
Zdravkovich [18] describes the process of the ‘drag crisis’ in 
terms of the point of transition to turbulence found in the 
cylinder wake. The transition to turbulence happens closer to 
the rear end of the cylinder as Re increases. At Re just below 
that for the ‘drag crisis’, two transition points can be observed, 
which are in the shear layer just beyond the point of separation 
on each side of the cylinder. These points move as Re further 
increases, causing one or both separation points to jump from 
one position to another. This results in a drop in drag, caused 
by the narrowing of the wake behind the cylinder.  

Sarpkaya [10] compared his experimental results with the 
theoretical predictions of Stokes and Wang, which were in 
good agreement with the Stokes–Wang analysis for 2D 
attached and laminar flow conditions. He divided the flow into 
four broad regimes according to KC. However the regime 
where drag coefficient decreases was not discussed. Sarpkaya 
[13] measured the positions of the separation points 
experimentally by examining a smooth circular cylinder 
immersed in a sinusoidally oscillating flow for a constant 
value of � as �� increased from the marginally stable to fully 
separated region. He pointed out that the separation is three-
dimensional, far from being a single eruption of a double sided 
single shear layer or the departure of dye filaments from the 
surface of a self-contained bubble. 

The existing literature demonstrates that there is also a 
boundary layer transition related drag crisis for circular 
cylinder in oscillatory flow. Very little information is available 
about how the boundary layer transition happens on the 
cylinder surface. This motivates present work. In this paper, 
we focus on a smooth cylinder in the oscillatory flow at Re 
between 103 and 105 and KC = 10. The transition to turbulence 
is studied numerically. The flow structures on the cylinder 
surface are discussed in detail to shed light on the boundary 
layer transition process.  



Numerical Method 

Governing Equations and the Numerical Model 

Large Eddy Simulation model is used in this study. Numerical 
simulations of oscillatory flow around a circular cylinder have 
been carried out by solving the filtered incompressible 
Navier–Stokes (NS) equations using the Open-source Field 
Operation and Manipulation (OpenFOAM). The NS equations 
and the continuity equation can be expressed as 
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where the velocity component �� is decomposed into a filtered 
velocity (���) and a subgrid-scale velocity (��

�), ��� = ��− ��
�, 

the same operation applies for pressure, and �� is the subgrid-
scale turbulent viscosity. A homogeneous dynamic 
Smagorinsky model was adopted. The finite volume method is 
used and pressure-velocity coupling is achieved following the 
Pressure Implicit with Splitting of Operators (PISO) method. 
The convection terms are discretised using the Gauss cubic 
scheme, while the Laplacian and pressure terms in the 
momentum equations are discretised using the Gauss linear 
scheme. The Euler implicit scheme is adopted for the temporal 
discretisation [17].   

A rectangular computational domain with total size of 
40D×20D and a single cylinder placed in the middle is 
employed in this study. A close-up view of the 2D mesh near 
the cylinder is shown in Figure 1(a). 

The initial values of flow velocity and pressure are set to zero 
in the whole domain. Flow velocity and pressure boundary 
conditions on the left boundary are set to 	��(�)=

�� sin�
��

�
��, ��(�)= 0 and  

��

��
= ��

��

�
cos�

��

�
��. 

(a) 

 

(b) 

 

Figure 1. (a) Schematic representation of the close-up view of the 2D 
mesh near the cylinder. (b) the definition of α, which is the angle on 
the cylinder surface measured from the upstream stagnation point. 

The velocity gradients in the x direction are set to zero and the 
pressure is specified as a reference value of zero on the right 
boundary. The symmetry boundary condition is adopted on the 
two boundaries parallel to the flow direction. And non-slip 
boundary condition is applied on the cylinder surface. 

It is known that the boundary layer transition on the cylinder is 
a three dimensional flow phenomenon, but it is believed that 
2D simulations can reveal the features of boundary layer 
transition from laminar to turbulent to certain extent as 
demonstrated by [2] and [15]. Three-dimensional simulations 
are still required to achieve more accurate understanding about 
the transition process and this work is being extended to three-
dimensional. 

Mesh Dependency Check 

The mesh dependency check includes the dependency on the 
mesh resolution in both radial and circumferential directions. 
Four meshes, as shown in Table 1, with total mesh number 
ranging from 80,740 to 196,724 have been generated by 
changing the mesh distribution around the cylinder surface. To 
make sure the sufficient resolution in the radial direction from 

the cylinder surface, ∆/D (the first layer mesh from cylinder) 
was set to keep y+ less than 1. From mesh 2 to mesh 4, ∆/D 
was kept constant while Nc (the number of cells on the 
cylinder surface) is refined in order to check that the 
resolution in the circumferential direction on the cylinder 
surface is sufficient to capture the transition process on it. A 
comparison of the simulation results based on the four meshes 
is given in Table 1. In the table, the total inline force on a 
body is decomposed into two parts, the drag and inertia 
components, based on the Morison Equation, 

� =
�

�
����|�(�)|�(�)+ �

���

�
��

��(�)

��
            (5) 

where F is the inline force on the cylinder, �(�) is the free 
stream velocity, CM is the inertia coefficient and CD is the drag 
coefficient. It can be seen that from mesh 2 to mesh 4, CD and 
CM varied by 2.17% and 2.45%, respectively. The root-mean-
square of inline force (CIn,rms) varied less than 2.5% among 
these four meshes. Reasonable agreement between the meshes 
demonstrates that a good mesh convergence has been 
achieved. By taking the efficiency into account, mesh 2 has 
been selected for the rest of the simulations reported in this 
work. 

Mesh Nv Nc ∆/D CD CM CIn,rms 

1 80 740 236 1.48e-4 0.75 1.68 1.320 

2 121 924 400 1.13e-4 0.92 1.63 1.325 

3 159 324 600 1.13e-4 0.97 1.58 1.327 

4 196 724 800 1.13e-4 0.90 1.59 1.293 

Table 1. Mesh-independent study on a circular cylinder in oscillatory 
flow at (Re, KC) = (105, 10) on the total element of cells (��), the 
number of cells on the cylinder (��), the size of the first layer grid 

next to the cylinder surface (∆/�), CD, CM, and CIn,rms. 

Results and Discussion 

Inertia and Drag Coefficient 

 

Figure 2. Comparison of CD and CM from numerical simulations with 
experimental data from Sarpkaya [9,10] and Justesen [5] at KC = 10. 

Numerical simulations have been conducted at Re up to 105 
for KC = 10 in order to capture the transition to turbulence on 
the surface of a circular cylinder. The force coefficients given 
by Sarpkaya [9,10] and Justesen [5] are plotted in Figure 2 
together with the present numerical results. From Figure 2, a 
gradually increasing trend can be captured from Re = 103 to 
104 for CD in the present results. Both numerical and 
experimental results suggest that CD decreases when Re 
approximately increases from 104 to 105, which corresponds to 
the ‘drag crisis’. After that, the experimental data indicates CD 

rises and reaches a plateau when Re is about 4×105. On the 
other hand, CM decreases with increasing Re from 103 to 104 
and then starts to increase at the same value of Re when CD 

drops. The experimental data shows a slightly rise after Re = 
2×105. The numerical results appear to be in fair agreement 
with the experiment data.  

Flow Features 

Figure 3 shows the vortex shedding process in one oscillation 
period for KC = 10. In the following, the ambient flow is in 
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the horizontal direction. In the interval of [��	~ +
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flow travels from left to right, whereas it is from right to left in 
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Figure 3. Instantaneous oscillatory flow field around a cylinder in one 
oscillation period for �� = 10, visualized using vorticity contours at 
levels between -20 (blue colours) and 20 (green colours), at different 
��: (a) �� = 103; (b) �� = 5×103; (c) �� = 104; (d) �� = 5×104; (e) �� 
= 105. 

From Figure 3(a) at Re = 103, it is noticeable that the shear 
layer on the cylinder surface is quite smooth. At Re = 5×103, 
as shown in Figure 3(b), small vortices appear at the far end of 
each shear layer. With further increases in Re, the shear layers 
become more unstable and small vortices appear on the 
surface of the cylinder (Figure 3(c) and (d)), which indicates a 
transition from laminar to turbulent in the shear layer. This 
transition leads to a delay of the separation of flow from the 
cylinder surface casing a substantial reduction in the drag 
force (as shown in Figure 2). When Re reaches 105, the flow 
field become increasingly turbulent (Figure 3(e)). 

Pressure Distribution and KH Vortices 

In order to capture the velocity and pressure distribution on 
the cylinder surface, 120 probes have been placed around the 
cylinder. As shown in Figure 4, pressure distribution around 
the cylinder in two oscillation periods for KC = 10, Re = 105 is 
displayed by using pressure contours at levels between -12 
(blue colour) and 12 (red colour). CP is pressure coefficient 
around the cylinder surface which is defined as  

�� =
����

�����
                               (6) 

where �� is the pressure in the freestream and �� is the 
stagnation pressure. CP’ is the pressure difference between CP 
and the background sinusoidal pressure. It is understood that 
the pressure changes are corresponding to the shedding of 
vortices. Therefore, the small peaks in the pressure signal 
indicate the small scale vortices shed from the surface of the 
cylinder. After taking away the background sinusoidal 
pressure, as shown in Figure 4, the high frequency pressure 
perturbation can be easily captured. From Figure 4(b), at α = 
315°, a dozen of peaks can be noticed in the plot with φ ϵ [5/8, 
7/8] (φ is the phase angle of the oscillation). In order to find 
out in which phase angle of the oscillation and what position 

on the cylinder that transition happens, we have counted the 
peaks in CP’ signal of each probe within a relative long time 
(i.e. 100 oscillation periods) and plotted in Figure 5. 

  (a) (b) 

 
Figure 4. Pressure distribution after data processing of an oscillating 
cylinder in 2D simulations in two oscillation periods at (Re, KC) = 
(105, 10): (a) pressure CP’ visualised using contours; (b) pressure time 
history measured at α = 315°. CP’ is the pressure difference between 
CP and the background sinusoidal pressure.  

 
Figure 5. Number of small peaks in the pressure signal per oscillation 
cycle at (Re, KC) = (105, 10). α is the angle on the cylinder surface and 
φ is the phase angle of the oscillation, sampled in 100 periods. 

As shown in Figure 5, for φ ϵ [0, 1/8], the ambient flow starts 
to accelerate from left to right and the transition happens at a 
position of roughly 90° and 255°. For φ ϵ [1/8, 2/8], the 
ambient flow continues accelerate and reaches the maximum 
velocity. It is noticeable that the number of small peaks for φ ϵ 
[1/8, 2/8] is more than twice of that for φ ϵ [0, 1/8]. The 
transition happens at a position around 120° and 255°. When 
the ambient flow begins to decelerate, the transition point 
moves to 120° and 240°. And more peaks are found at the 
position of 120° than 240° for φ ϵ [2/8, 3/8]. For φ ϵ [3/8, 4/8], 
the ambient flow continues decelerate and the flow velocity 
reaches zero. The transition happens at the same position of 
that for φ ϵ [2/8, 3/8]. However, the number of peaks drops to 
a similar level of that when φ ϵ [0, 1/8], which is less than half 
of the number for φ ϵ [2/8, 3/8]. For φ ϵ [4/8, 8/8], the ambient 
flow reverses and starts to travel from right to left. The 
transition points of the cylinder moves from 90° and 270° for 
φ ϵ [4/8, 5/8], to 75° and 300° for φ ϵ [5/8, 7/8], and then to 
45° and 300° for φ ϵ [7/8, 8/8]. This demonstrates that 
transition mostly occurs during the acceleration stage just 
before the velocity decelerates, where there are significant 
more peaks in the pressure signal.  

Pressure Perturbation and Separation point 

Another interesting phenomenon in Figure 4(a) is that between 
� = 220° and 340° in the half oscillation period �	= 
2985~2990, the perturbation in the pressure signal on the 
bottom of the cylinder has an obvious trend of traveling to the 
large value of �. The initial angle of the perturbation rises 
from approximately t = 2986.6 to 2987 as the ambient flow 
velocity increases. It reaches the maximum value just after the 
velocity comes to its maximum value, and then stays in the 
similar range until about t = 2988.6. Figure 6 has amplified the 
bottom of the cylinder for t = 2985.6 ~ 2988.6 when the 
perturbation in the pressure signal has been observed. For 
clarification, the range of perturbation has been labelled in 
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each figure. From Figure 6, we can conclude that the 
perturbation in the pressure signal is mainly caused by the 
small scale vortices very close to the cylinder. Here, we have 
plotted the lines where the shear stress equals to 0 in Figure 7 
in half period. The zero shear stress lines agree well with the 
figure of pressure distribution. This confirmed that the 
traveling of the perturbation in the pressure signal is mainly 
due to the traveling of the separation point.  

 

 

 

 
Figure 6. Zoom in for instantaneous flow field between � = 2985.6 ~ 
2988.6 at (Re, KC) = (105, 10). Time and the range of perturbation in 
the pressure signal has been labelled in each figure. 

 
Figure 7 The lines of zero shear stress on the cylinder in half period at 
(Re, KC) = (105, 10). 

Conclusions 

Two-dimensional numerical simulations are conducted on a 
cylinder in oscillatory flow at Re = 103 ~ 105 and KC = 10. 
The numerical results are in fair agreement with the 
experiment data. Drag crisis is captured. The transition to 
turbulence is observed in the flow field and quantified by 
analysing pressure perturbations around the cylinder. The 
transition points in terms of phase angle in the oscillation 
period and position on the cylinder surface are studied. 
Moreover, the traveling of the perturbation in the pressure 
signal is shown mainly due to the traveling of the separation 
point. 
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