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Boundary layer transition on the surface of a cylinder in oscillatory flow
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Abstract

The phenomena of sinusoidally oscillatory flow around a
stationary circular cylinder are very rich and are of great
importance to both practical engineering and fundamental
studies. In this paper, two-dimensional (2D) numerical
simulations are conducted for oscillatory flows around a
circular cylinder. Drag crisis, which has been previously
reported in unidirectional flows, is captured and the transition
to turbulence on the cylinder surface is observed. The
boundary layer transition is demonstrated by the pressure
distribution on cylinder surface, along with the movements of
stagnation point and separation point.

Introduction

The transition of plane-wall boundary layer in oscillatory flow
has been the subject of many investigations for decades. One
way of illustrating the laminar-to-turbulent transition is to
display the friction coefficient as function of Reynolds number
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o where Uy, is the

(in boundary-layer flows, Re, =

maximum value of the free-stream velocity, a is the amplitude
of the free-stream motion and v is the kinematic viscosity of
the fluid). The bed-shear-stress experiences turbulence first
just prior to the bed shear-stress reversal and then spreads
towards smaller and smaller values of phase with increasing
Rey. Jensen et al. [4] explained it as the adverse pressure
gradient becomes relatively large and the velocity of near-bed
fluid particles becomes relatively small at the phase value
where bed shear stress reverses, so that a favourable
environment forms for the initiation of turbulence. The
boundary-layer properties change markedly with respect to
Rey, near the bed, and the manner in the turbulence quantities
change is exactly the same as in steady boundary-layer flows.

In offshore engineering, circular shaped structures are used

widely, such as pipelines, risers and pile foundations etc. Thus

comprehensive researches on a circular cylinder in sinusoidal

oscillatory flow or waves have been carried out during the past

few decades. The two related dimensionless parameters are the

Keulegan—Carpenter number (KC) and Strokes number (f3),
which are defined as
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where Re = U’:—D, 'm is the maximum oscillation velocity, 7 is

the period of the oscillation, and D is the diameter of the
cylinder.

Oscillatory flow phenomena around a stationary circular
cylinder are rather rich. These include acoustic streaming
[7,8,14], Honji instability [2], dipole tubes, quasi-coherent
structures, and transition to turbulence [11,12]. It is believed
that every possible combination of KC and f is of great
importance in both practical and fundamental study and
touches certain unique aspects of time-dependent flows [13].

For relatively small KC and f3, eight regimes of flow has been
identified experimentally by Tatsuno and Bearman [16]. The
Honji instability was studied by An [1] and the spacing
between Hongji vortices have been investigated. Interestingly,
from a physical point of view, Justesen [6] pointed out that as
KC — 0, the flow amplitude will become so small with respect
to D that the flow will not be able to feel the geometry of the
wall below it, whether the wall is a cylinder surface or a flat
plate, and the separation phenomenon would lead to
simultaneous flow reversal over the entire cylinder surface in
this extreme condition.

For relatively large KC (up to 150) and Re (up to 7x10%),
Sarpkaya [9] presents the results of an extensive experimental
investigation on smooth and sand-roughened circular
cylinders. He concluded that, the drag coefficient undergoes a
‘drag crisis’ and then rises to a nearly constant value within
the range of Re and KC tested, while the inertia coefficient
also undergoes an ‘inertia crisis’ at Re values corresponding to
the ‘drag crisis’ and then asymptotically decreases.
Zdravkovich [18] describes the process of the ‘drag crisis’ in
terms of the point of transition to turbulence found in the
cylinder wake. The transition to turbulence happens closer to
the rear end of the cylinder as Re increases. At Re just below
that for the ‘drag crisis’, two transition points can be observed,
which are in the shear layer just beyond the point of separation
on each side of the cylinder. These points move as Re further
increases, causing one or both separation points to jump from
one position to another. This results in a drop in drag, caused
by the narrowing of the wake behind the cylinder.

Sarpkaya [10] compared his experimental results with the
theoretical predictions of Stokes and Wang, which were in
good agreement with the Stokes—Wang analysis for 2D
attached and laminar flow conditions. He divided the flow into
four broad regimes according to KC. However the regime
where drag coefficient decreases was not discussed. Sarpkaya
[13] measured the positions of the separation points
experimentally by examining a smooth circular cylinder
immersed in a sinusoidally oscillating flow for a constant
value of B as KC increased from the marginally stable to fully
separated region. He pointed out that the separation is three-
dimensional, far from being a single eruption of a double sided
single shear layer or the departure of dye filaments from the
surface of a self-contained bubble.

The existing literature demonstrates that there is also a
boundary layer transition related drag crisis for circular
cylinder in oscillatory flow. Very little information is available
about how the boundary layer transition happens on the
cylinder surface. This motivates present work. In this paper,
we focus on a smooth cylinder in the oscillatory flow at Re
between 10% and 10° and KC = 10. The transition to turbulence
is studied numerically. The flow structures on the cylinder
surface are discussed in detail to shed light on the boundary
layer transition process.



Numerical Method

Governing Equations and the Numerical Model

Large Eddy Simulation model is used in this study. Numerical
simulations of oscillatory flow around a circular cylinder have
been carried out by solving the filtered incompressible
Navier—Stokes (NS) equations using the Open-source Field
Operation and Manipulation (OpenFOAM). The NS equations
and the continuity equation can be expressed as
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where the velocity component u; is decomposed into a filtered
velocity (%;) and a subgrid-scale velocity (u;"), #; = u; — u;’,
the same operation applies for pressure, and v; is the subgrid-
scale turbulent viscosity. A homogeneous dynamic
Smagorinsky model was adopted. The finite volume method is
used and pressure-velocity coupling is achieved following the
Pressure Implicit with Splitting of Operators (PISO) method.
The convection terms are discretised using the Gauss cubic
scheme, while the Laplacian and pressure terms in the
momentum equations are discretised using the Gauss linear
scheme. The Euler implicit scheme is adopted for the temporal
discretisation [17].

A rectangular computational domain with total size of
40Dx20D and a single cylinder placed in the middle is
employed in this study. A close-up view of the 2D mesh near
the cylinder is shown in Figure 1(a).

The initial values of flow velocity and pressure are set to zero
in the whole domain. Flow velocity and pressure boundary
conditions on the left boundary are set to U,(t) =

Upsi r(z?nt), U, (t) = 0 and g—z = Umz?ﬂcos(z?ﬂt).
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Figure 1. (a) Schematic representation of the close-up view of the 2D
mesh near the cylinder. (b) the definition of @, which is the angle on
the cylinder surface measured from the upstream stagnation point.

The velocity gradients in the x direction are set to zero and the
pressure is specified as a reference value of zero on the right
boundary. The symmetry boundary condition is adopted on the
two boundaries parallel to the flow direction. And non-slip
boundary condition is applied on the cylinder surface.

It is known that the boundary layer transition on the cylinder is
a three dimensional flow phenomenon, but it is believed that
2D simulations can reveal the features of boundary layer
transition from laminar to turbulent to certain extent as
demonstrated by [2] and [15]. Three-dimensional simulations
are still required to achieve more accurate understanding about
the transition process and this work is being extended to three-
dimensional.

Mesh Dependency Check

The mesh dependency check includes the dependency on the
mesh resolution in both radial and circumferential directions.
Four meshes, as shown in Table 1, with total mesh number
ranging from 80,740 to 196,724 have been generated by
changing the mesh distribution around the cylinder surface. To
make sure the sufficient resolution in the radial direction from

the cylinder surface, A/D (the first layer mesh from cylinder)
was set to keep y+ less than 1. From mesh 2 to mesh 4, A/D
was kept constant while N: (the number of cells on the
cylinder surface) is refined in order to check that the
resolution in the circumferential direction on the cylinder
surface is sufficient to capture the transition process on it. A
comparison of the simulation results based on the four meshes
is given in Table 1. In the table, the total inline force on a
body is decomposed into two parts, the drag and inertia
components, based on the Morison Equation,
1 nD? au(t)
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where F is the inline force on the cylinder, U(t) is the free
stream velocity, Cu is the inertia coefficient and Cp is the drag
coefficient. It can be seen that from mesh 2 to mesh 4, Cp and
Cwu varied by 2.17% and 2.45%, respectively. The root-mean-
square of inline force (Cumrms) varied less than 2.5% among
these four meshes. Reasonable agreement between the meshes
demonstrates that a good mesh convergence has been
achieved. By taking the efficiency into account, mesh 2 has
been selected for the rest of the simulations reported in this
work.

Mesh Ny Ne ND Cp Cu | Cuyrms

1 80740 | 236 | 1.48e-4 | 0.75 | 1.68 | 1.320
2 121924 | 400 | 1.13e-4 | 0.92 | 1.63 | 1.325
3 159324 | 600 | 1.13e-4 | 0.97 | 1.58 | 1.327
4

196 724 | 800 | 1.13e-4 | 0.90 | 1.59 | 1.293
Table 1. Mesh-independent study on a circular cylinder in oscillatory
flow at (Re, KC) = (10°, 10) on the total element of cells (N,,), the
number of cells on the cylinder (N,), the size of the first layer grid
next to the cylinder surface (A/D), Cp, Cy, and Cin,rms.

Results and Discussion

Inertia and Drag Coefficient
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Figure 2. Comparison of Cp and Cy, from numerical simulations with
experimental data from Sarpkaya [9,10] and Justesen [5] at KC = 10.

Numerical simulations have been conducted at Re up to 10°
for KC = 10 in order to capture the transition to turbulence on
the surface of a circular cylinder. The force coefficients given
by Sarpkaya [9,10] and Justesen [5] are plotted in Figure 2
together with the present numerical results. From Figure 2, a
gradually increasing trend can be captured from Re = 103 to
10* for Cp in the present results. Both numerical and
experimental results suggest that Cp decreases when Re
approximately increases from 10* to 103, which corresponds to
the ‘drag crisis’. After that, the experimental data indicates Cp
rises and reaches a plateau when Re is about 4x105. On the
other hand, Cu decreases with increasing Re from 103 to 10*
and then starts to increase at the same value of Re when Cp
drops. The experimental data shows a slightly rise after Re =
2x10°. The numerical results appear to be in fair agreement
with the experiment data.

Flow Features

Figure 3 shows the vortex shedding process in one oscillation
period for KC = 10. In the following, the ambient flow is in



the horizontal direction. In the interval of [nT ~ + %T], the
flow travels from left to right, whereas it is from right to left in
the interval [+ %T ~ + %T].
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Figure 3. Instantaneous oscillatory flow field around a cylinder in one
oscillation period for KC = 10, visualized using vorticity contours at
levels between -20 (blue colours) and 20 (green colours), at different
Re: (a) Re = 10% (b) Re = 5x10°% (c) Re = 10% (d) Re = 5x10% (e) Re
=10°.

From Figure 3(a) at Re = 103, it is noticeable that the shear
layer on the cylinder surface is quite smooth. At Re = 5x10°,
as shown in Figure 3(b), small vortices appear at the far end of
each shear layer. With further increases in Re, the shear layers
become more unstable and small vortices appear on the
surface of the cylinder (Figure 3(c) and (d)), which indicates a
transition from laminar to turbulent in the shear layer. This
transition leads to a delay of the separation of flow from the
cylinder surface casing a substantial reduction in the drag
force (as shown in Figure 2). When Re reaches 107, the flow
field become increasingly turbulent (Figure 3(e)).

Pressure Distribution and KH Vortices

In order to capture the velocity and pressure distribution on
the cylinder surface, 120 probes have been placed around the
cylinder. As shown in Figure 4, pressure distribution around
the cylinder in two oscillation periods for KC = 10, Re = 107 is
displayed by using pressure contours at levels between -12
(blue colour) and 12 (red colour). Cp is pressure coefficient
around the cylinder surface which is defined as
P—Poo
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where po, is the pressure in the freestream and p, is the
stagnation pressure. Cp’ is the pressure difference between Cp
and the background sinusoidal pressure. It is understood that
the pressure changes are corresponding to the shedding of
vortices. Therefore, the small peaks in the pressure signal
indicate the small scale vortices shed from the surface of the
cylinder. After taking away the background sinusoidal
pressure, as shown in Figure 4, the high frequency pressure
perturbation can be easily captured. From Figure 4(b), at o =
315°, a dozen of peaks can be noticed in the plot with ¢ € [5/8,
7/8] (¢ is the phase angle of the oscillation). In order to find
out in which phase angle of the oscillation and what position

on the cylinder that transition happens, we have counted the
peaks in Cp’ signal of each probe within a relative long time
(i.e. 100 oscillation periods) and plotted in Figure 5.
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Figure 4. Pressure distribution after data processing of an oscillating
cylinder in 2D simulations in two oscillation periods at (Re, KC) =
(10%, 10): (a) pressure Cp’ visualised using contours; (b) pressure time
history measured at a = 315°. Cp’ is the pressure difference between

Cp and the background sinusoidal pressure.
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Figure 5. Number of small peaks in the pressure signal per oscillation
cycle at (Re, KC) = (10°, 10). a is the angle on the cylinder surface and
¢ is the phase angle of the oscillation, sampled in 100 periods.

As shown in Figure 5, for ¢ € [0, 1/8], the ambient flow starts
to accelerate from left to right and the transition happens at a
position of roughly 90° and 255°. For ¢ € [1/8, 2/8], the
ambient flow continues accelerate and reaches the maximum
velocity. It is noticeable that the number of small peaks for ¢ €
[1/8, 2/8] is more than twice of that for ¢ € [0, 1/8]. The
transition happens at a position around 120° and 255°. When
the ambient flow begins to decelerate, the transition point
moves to 120° and 240°. And more peaks are found at the
position of 120° than 240° for ¢ € [2/8, 3/8]. For ¢ € [3/8, 4/8],
the ambient flow continues decelerate and the flow velocity
reaches zero. The transition happens at the same position of
that for ¢ € [2/8, 3/8]. However, the number of peaks drops to
a similar level of that when ¢ € [0, 1/8], which is less than half
of the number for ¢ € [2/8, 3/8]. For ¢ € [4/8, 8/8], the ambient
flow reverses and starts to travel from right to left. The
transition points of the cylinder moves from 90° and 270° for
@ € [4/8, 5/8], to 75° and 300° for ¢ € [5/8, 7/8], and then to
45° and 300° for ¢ € [7/8, 8/8]. This demonstrates that
transition mostly occurs during the acceleration stage just
before the velocity decelerates, where there are significant
more peaks in the pressure signal.

Pressure Perturbation and Separation point

Another interesting phenomenon in Figure 4(a) is that between
a = 220° and 340° in the half oscillation period t=
2985~2990, the perturbation in the pressure signal on the
bottom of the cylinder has an obvious trend of traveling to the
large value of a. The initial angle of the perturbation rises
from approximately ¢ = 2986.6 to 2987 as the ambient flow
velocity increases. It reaches the maximum value just after the
velocity comes to its maximum value, and then stays in the
similar range until about 7 = 2988.6. Figure 6 has amplified the
bottom of the cylinder for ¢ = 2985.6 ~ 2988.6 when the
perturbation in the pressure signal has been observed. For
clarification, the range of perturbation has been labelled in



each figure. From Figure 6, we can conclude that the
perturbation in the pressure signal is mainly caused by the
small scale vortices very close to the cylinder. Here, we have
plotted the lines where the shear stress equals to 0 in Figure 7
in half period. The zero shear stress lines agree well with the
figure of pressure distribution. This confirmed that the
traveling of the perturbation in the pressure signal is mainly
due to the traveling of the separation point.
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Figure 6. Zoom in for instantaneous flow field between t = 2985.6 ~
2988.6 at (Re, KC) = (10°, 10). Time and the range of perturbation in
the pressure signal has been labelled in each figure.
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Figure 7 The lines of zero shear stress on the cylinder in half period at
(Re, KC) = (10°, 10).

Conclusions

Two-dimensional numerical simulations are conducted on a
cylinder in oscillatory flow at Re = 10° ~ 10° and KC = 10.
The numerical results are in fair agreement with the
experiment data. Drag crisis is captured. The transition to
turbulence is observed in the flow field and quantified by
analysing pressure perturbations around the cylinder. The
transition points in terms of phase angle in the oscillation
period and position on the cylinder surface are studied.
Moreover, the traveling of the perturbation in the pressure
signal is shown mainly due to the traveling of the separation
point.
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