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Abstract

We present development of a model of the non-linear fluid-
structure interaction of a cantilevered flexible plate with an ideal
flow that can account for the effect of boundary-layer separa-
tion from the plate surface upstream of its trailing edge. The
model also allows for the wake to be formed solely from the
trailing edge, an assumption used in previous studies of the sys-
tem that also constrain the path of its lumped vorticity thereby
precluding roll-up. Short plates are studied herein for which the
behaviour is dominated by low-order structural modes. When
the wake is forced to form from the trailing edge the typical
sequence of amplitude growth to non-linearly saturated oscil-
lations at flow speeds above that of the onset of linear insta-
bility is found. However, if separation is included the system
evidences the same sequence at a flow speed for which the sys-
tem is neutrally stable to linear disturbances. This suggests that
flow separation may be the cause of the sub-critical instability
found in experimental studies of the system. The mechanism
for this effect is briefly discussed though a consideration of the
wake dynamics. The reduced complexity of our model relative
to others allows us then to offer further insights into the origins
of the sub-critical instability.

Introduction

Extending our work of [4] we further develop our model of
the non-linear fluid-structure interaction (FSI) of a cantilevered
flexible plate of length L in uniform axial flow of velocity U∞

as depicted in figure 1. Inviscid flow is assumed and therefore
the FSI model approximates the very high Reynolds number
(Re) flows that predominate in engineering applications. How-
ever, viscous effects are implicitly incorporated either through
the imposition of the Kutta condition at the plate’s trailing edge
or through boundary-layer separation (as drawn in figure 1) that
can occur in an adverse pressure gradient upstream of the trail-
ing edge. Previous approaches, for example [11, 12], have mod-
elled this FSI system using the former whereby the wake forms
from the trailing edge and in [12] is assumed to follow a sinu-
soidal path following the spatio-temporal characteristics of the
plate motion. Therefore, the main purpose of this paper is to de-
termine the effect of flow separation on the non-linear stability
of the FSI system by comparing its results with those in which
the boundary-layer vorticity is assumed to remain attached on
both sides for the full length of the flexible plate.

The latest experiments on this FSI are provided by [14], who
also present a comparison of their results with those of the
model presented in [12] which showed excellent agreement for
the limit of linear stability. However, the theoretical model pre-
dicted a supercritical bifurcation while their experiment demon-
strated a subcritical bifurcation creating a hysteresis loop. With
regards to the origin of hysteresis in this FSI, they reiterated
the explanation posed in [3, 12]: that large aspect ratio plates
suffer more from spanwise deformations which have a psuedo-
stiffening effect leading to higher critical velocities.

As yet numerical modelling has been unable to capture the hys-

teresis phenomenon because modelling is still restricted to val-
ues of Re that are too low for separation to occur. Further-
more, the type of model employed is usually very complex e.g.
direct-numerical simulation, leading to difficulty in exploring
the underlying physics with regards to the specific interactions
involved in the hysteresis phenomenon. The most complete nu-
merical study to date of a flag in viscous flow is provided by
[2] reaching Re = 103. They coupled a finite-element model to
a solver for thin membrane dynamics of arbitrarily large mo-
tion. They identified three distinct regimes of instability: (I)
fixed-point stability, in which the flag settles into a stable non-
oscillatory straight form; (II) limit-cycle flapping, where the
body enters steady oscillations of constant amplitude and fre-
quency; and (III) chaotic flapping, where the flag undergoes ir-
regular non-periodic flutter.

Herein it is shown that the simple high-Re model developed is
able to capture hysteresis and that the reduced complexity of our
model relative to others allows us to more deeply investigate its
origins.

Method

The present solution of the Laplace equation utilises a non-
linear boundary-element flow solution similar to that developed
in [7] and is an extension of the second-order linear boundary-
element method detailed in [5] so as to capture finite-amplitude
effects. The flexible plate is discretised into N panels each of
length δs = L/N and the vector of non-linear vortex strengths,
γ, for the N panels is found by imposing the no-flux condition
giving

{γ}= [IN]−1{U∞ sinθ + η̇cosθ − ẋsinθ

+ uTb sinθ − uNb cosθ}, (1)

where θ is the panel angle relative to y = 0 and ẋ and η̇ are
respectively the velocities of each panel control point in the x-
and y-directions. uNb and uT b are respectively the normal and
tangential velocities induced at the panel control points by the
discrete vortices of the wake. [IN] comprises the normal influ-
ence coefficients. The non-linear version of the Euler-Bernoulli

Chapter 7

Theory

This section deals with the extension of the theory contained in the linear part

of this thesis to account for large-amplitude deflections permitted by a non-linear

model of the fluid and plate motions. Additionally a model capable of predicting

flow separation from the surface of the plate and the non-linear motion of the

wake vortices is developed. The system under consideration is shown in Figure

7.1.

Figure 7.1: Schematic of the system studied and the approach taken to model
separation.

7.1 Beam Model

The non-linear beam model is an extension of the linear model presented in

Section 3.1. Again the plate is discretized into N mass points (shown in Figure

72

Figure 1: Schematic of the fluid-structure system studied and
the approach taken to model separation.



beam equation, presented in [9, 11], is

δp = ρhη̈s − ρh ∂η
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where ρ, h, and B are the plate density, thickness, and stiff-
ness respectively. This model is based upon the assumption that
the plate is inextensible; thus, L and therefore δs are constant.
To determine the pressure difference across the plate, δp, the
vortex-singularity strengths found from equation 1 are used to
determine the flow perturbations (from the mean flow) and the
velocity potential. These are then used in the unsteady Bernoulli
pressure equation (see [5]) applied along the upper and lower
surfaces of the flexible plate. When separation occurs, the sur-
face pressure downstream of the separation point is taken to be
that at the point of separation.

We decompose the transmural pressure using δp= δp′+ρf[B]η̈
to separate out the fluid inertia; herein ρf is the fluid density
and [B] is a matrix that contains the influence coefficients of
the velocity potential. Combining this with equation 2 gives
an equation for the coupled fluid-structure system. This is rear-
ranged for plate acceleration and is solved using a semi-implicit
Crank-Nicholson-type method of solution, detailed in [8], that
solves first for the plate acceleration at the next time step fol-
lowed by integration to determine velocities and displacements.
The wake formed by the separation of vorticity from the plate
is modelled using a non-linear version of the discrete-vortex
method described in [5] by Gaussian blobs of strength Γ shown
in figure 1.

The model without separation was validated by comparison
with [12], see figure 2, whose results are shown in the left hand
column of figure. The corresponding results from the current
model are shown in the right hand column. The first two rows
of figures show the evolution of the vertical and horizontal tip
deflection in time. The third row of figures shows snapshots
of the plate at a number of time steps through the simulation.
The fourth and fifth row of figures show the phase plots of the
plate tip in the x- and y-directions respectively, and the final row
shows a plot of the tip deflection in the x- and y-directions. It
can be seen that in each row there is good agreement between
the two models, each case achieving similar scale deflections
and shapes once the plate deflection has saturated and the limit
cycle behaviour has been reached. It should be noted that there
are two key difference between the model presented in [12] and
the current model. Firstly, in the current model the wake is al-
lowed to move freely, whereas the wake used by [12] is assumed
to travel along a sinusoidal path. Secondly, the model presented
by [12] employs the Galerkin method and takes account of the
first 6 modes, while the current model supports any number of
modal shapes that may arise.

Separation was chosen to occur downstream of the point where
an adverse pressure gradient was detected on either the upper or
lower surface of the plate when it exceeds a percentage thresh-
old pressure value Pth of the dynamic pressure ρfU2

∞. It is stated
in the literature, e.g. [6], that it is impossible to predict the
separation point accurately without some a priori knowledge
from experiments. Thus it is not known what the exact value
of threshold pressure for separation should be for the full FSI
studies, though our model can be calibrated against available
experimental results, e.g. [3, 10]. However, the rigid-body sep-
aration model can be more thoroughly validated: this was done
by applying the model to two different NACA aerofoils and the
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Figure 8.8: A comparison between the full numerical model (right) with no shear-
layer separation, and the results presented by Tang and Päıdoussis [2007] (left).Figure 2: A comparison between the full numerical model

(right) with no shear-layer separation, and the results presented
by [12] (left).

results were compared to the exhaustive experimental results of
[1]. When the model was applied to a symmetric aerofoil and
it predicted separation to occur at incidence α≈±22o while in
the experimental results it was ≈ ±15o. When the model was
applied to a cambered aerofoil, the predicted separation point
(16o) was much closer to the experimental result (14o). There
are a number of potential reasons for differences between our
theoretical model and the experimental results e.g. there are
other viscous effects that affect the result such as wall effects
and blockage, which do not arise in the model presented. Fol-
lowing this validation, it was adjudged that when applied to the
flexible plate, separation from the plate surface would occur at
Pth = 0.05.

Results

Results are presented in terms of non-dimensional time T̄ =

T ρ2
f B1/2/(ρh)5/2, flow speed Ū = U∞(ρh)3/2/(ρfB1/2) and

fluid-to-plate mass ratio L̄ = ρfL/(ρh) following the scheme
presented in [5]. Herein, we use L̄ = 1 throughout that broadly
corresponds to the short plates for which the FSI dynamics are
dominated by low-order flexible-plate modes [5, 11, 12].

We showed in [4] that when the effect of separation upstream
of the trailing edge was included at flow speeds much greater
than Uc, it was found that the effect on system behaviour was
negligible. However, also shown in [4], at lower flow speeds



(b)

Figure 3: Wake vorticity generated by a plate undergoing non-
linear oscillations for L̄ = 1 with Ū = 5.50: (a) wake vortic-
ity is forced to separate at the trailing edge; (b) separation is
modelled. Markers denote a wake vortex shed from either the
trailing edge (•), or the separation point (4). Colour denotes
vorticity polarity: green - positive, red - negative.

wake-separation effects are found to be very significant. In
the absence of separation, after applying the initiating finite-
amplitude deflection the plate motion settles quickly into low-
amplitude neutrally-stable oscillations as predicted by linear
studies. By contrast, amplitude growth followed by non-linear
saturation when the plate settles in to limit-cycle oscillations
are observed when separation is included in the model. This
demonstrates that flow separation can cause non-linear instabil-
ity at a flow speed for which the system is linearly stable. This
type of non-linear sub-critical instability, that causes hysteresis
as flow speed is changed, is well known in experimental studies
of cantilevered flexible-plate/flag flutter.

To understand the effect of separation on non-linear motions
and stability of the flexible plate, figure 3 shows the wake struc-
tures at Ū = 5.50 when the flow is (a) forced to remain attached
for the full length of the plate and (b) when separation is mod-
elled. First, (a) demonstrates that the assumption, e.g. in the
models of [12], that wake vortices follow a sinusoidal path when
separation occurs at the trailing edge is valid. Second, the ef-
fect of separation on stability, discussed above, can be deduced
from the structure of the wake in (b). At high flow speed, it
was observed that intense vortical structures form but that these
convect downstream rapidly and have little effect on the plate
behaviour. In contrast, for lower flow speeds, roll-up occurs
much closer to the trailing edge of the plate (located at x/L = 1
in these figures) and these structures can therefore exercise a
significant effect on the flow field that drives the plate motion.

The effect of separation was examined over a range of flow
speeds and at a number of values of Pth. Initial results (not
shown) for Ū = 7.16 (approximately 40% above the critical ve-
locity for the linear model) were carried out for Pth = 0.001,
0.01, 0.1 and 10, the last found to be high enough to prohibit
flow separation upstream of the trailing edge entirely. Decreas-
ing the Pth from 10 downwards, the system was unaffected until
Pth = 0.01 when the system began to take longer to reach sat-
uration and was much less stable. It was found that separation
occurred at approximately 40% of the time steps using this pres-
sure threshold value. These effects were seen to increase as Pth

CHAPTER 9. RESULTS 102

Figure 9.2: The deflection predicted for (a) ⌘t=0
L = 0.01L, (b) ⌘t=0

L = 0.1L, and
(c) ⌘t=0

L = 0.2L. Each line represents the results for a di↵erent threshold pressure
value; Pthresh = 0.001 (�), Pthresh = 0.01 (●), Pthresh = 0.1 (×). Pthresh = 10.0 is
shown by the dashed line.

Figure 9.3: The maximum stable deflection achieved when first increasing and
then decreasing the flow speed for (a) Pthresh = 0.001, (b) Pthresh = 0.01, and (c)
Pthresh = 0.1. In each case the dashed and solid lines represent the deflection
achieved when increasing and decreasing the flow speed respectively.

Figure 9.4: The hysteresis loop found in experiment for L̄ = 1, adapted from
Watanabe et al. [2002a].
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Figure 4: The deflection predicted for ηt=0
L (a) 0.01L, (b) 0.1L,

and (c) 0.2L. Pth: 0.001 (?), 0.01 (•), 0.1 (×), 10.0 (−−).

was further decreased until finally Pth = 0 where the beam was
unable to maintain self-sustaining oscillations.

Figure 4 shows the results gained using these same pressure
thresholds over a range of flow speeds and using different ini-
tial deflections. Figure 4(a), (b), and (c) show the results for
ηt=0

L = 0.01, 0.1, and 0.2 respectively, the value in (a) represent-
ing the results when the initial deflection is close to the linear
regime. It is seen that as the flow speed increases, each case has
the same critical velocity, though for larger initial deflections;
in Figures 4(b) and (c), the amplitude of the oscillations at these
lower flow speeds is greater than in Figure 4(a). At each initial
deflection the line of Pth = 0.1 is identical to the Pth = 10 result
until Ū ≈ 7, above which the results begin to diverge slightly
as flow separation upstream of the trailing edge begins to oc-
cur as the combination of flow speed and amplitude are enough
to overcome the threshold pressure. For the lower threshold
pressures it is seen that this point is reached much sooner. In
all cases each curve displays a consistent drop in steady-state
amplitude above a certain flow speed. This is a result of the in-
creasing levels of separation that were observed with increasing
flow speed. For example it was seen during the experiments that
for Pth = 0.1 at Ū = 8.81 and ηt=0

L = 0.2 that the flow would
separate in approximately 10% of the time steps, however at
Ū = 11.5 separation occurred at 50% of the time steps.

From the above results it is clear that separation upstream of
the trailing edge has a significant effect on the system, causing
the system to take longer to reach saturation, and lowering the
oscillation amplitude achieved. It can also be seen that the fi-
nal results predicted by each model are mostly independent of
the initial deflection, the only notable exception being at flow
speeds close to the critical velocity, where bi-stability can be
observed.
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Figure 5: Hysteresis loops at L̄ = 1: The maximum stable de-
flection achieved when first increasing and then decreasing the
flow speed for Pth values of (a) 0.001, (b) 0.01, and (c) 0.1.
In each case the dashed and solid lines represent the deflection
achieved when increasing and decreasing the flow speed respec-
tively.

To allow the model to more closely mimic the continuous tran-
sition between flow speeds seen in physical experiments, the
final state of the model at one flow speed was used as the initial
conditions for the next. The results produced by this pseudo-
continuous model are shown in figure 5(a)-(c) using values of
Pth of (a) 0.001, (b) 0.01, and (c) 0.1. The dashed line shows the
amplitude of the oscillations when the flow speed is increased,
while the solid line shows the same amplitude when the flow
speed is decreased. It can be seen that for Pth = 0.001 no hys-
teresis loop is observed. However, for Pth = 0.01 and 0.1 a
clear sub-critical hysteresis loop is seen, where the system is
able to maintain self-sustaining oscillations below the critical
velocity. In each case the size of hysteresis loop is similar, the
system becoming unstable initially at Ū = 5.51, and returning
to stability at Ū = 4.95. The sizes of the hysteresis loops found
are much smaller than those found in the experimental results of
[13] However, the flow speeds over which hysteresis is observed
are similar, as are the amplitudes of the oscillations.

Conclusions

We have developed a computational model to simulate non-
linear oscillations of a cantilevered plate in potential flow that
can incorporate the effects of boundary-layer separation up-
stream of the trailing edge that would occur in regions of high
adverse pressure gradient along the plate. The main new find-
ings of the present study arise from the effects of separation. At
flow speeds much higher than the critical speed for linear insta-
bility, the effects of separation are not significant. Amplification
and subsequent non-linear saturation at finite amplitudes can be

adequately modelled by wake formation from the trailing edge
of the plate as has been done in previous studies. However, at
lower flow speeds separation is destabilising. In particular, at
the flow speed for which the system is neutrally stable to linear
disturbances, we have shown that separation can lead to non-
linear instability and ensuing limit-cycle flutter. This suggests
that flow separation may be a mechanism for the sub-critical
instability that is observed in experimental work. The reduced
complexity of our model relative to others then allowed us to
further investigate the origins of the hysteresis instability. It was
shown that a critical value of Pth exists for hysteresis to occur
and that its intensity can be varied by varying the magnitude of
Pth. Also non-linear instability with separation was mostly in-
dependent of initial plate amplitude. Future work will continue
to investigate further the origins of the hysteresis phenomenon.
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