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Abstract

The stretched-vortex subgrid model is used in conjunction with
a fourth-order finite-difference method and artificial damping
to run large-eddy simulations of decaying turbulence. By tun-
ing the strength of the damping and the overlap between the
subgrid model cutoff length-scale and the computational grid
spacing, it is possible to obtain results that are independent of
the grid spacing and consistent with reference simulations using
a high-resolution spectral method. Artificial damping is useful
for controlling numerical dispersion in large-eddy simulations
of turbulent mixing.

Introduction

Turbulent flows are characterised by irregular three-
dimensional motion over a wide range of spatial and
temporal scales. In a direct numerical simulation of turbulent
flow, the entire range of relevant physical scales is resolved
on a computational grid. In many applications, including
aerodynamic, atmospheric and oceanic flows, for example,
the range of scales is so enormous that a direct numerical
simulation is not computationally feasible. In a large-eddy
simulation (LES), only scales larger than some length-scale ∆

are resolved on the computational grid, where ∆ is much larger
than the smallest physical scale, thereby reducing grid size and
computational cost. Usually, ∆ is equal to the grid spacing h.
A subgrid model is used to account for the effect of subgrid
scales on the macroscale flow.

Large-eddy simulations are sensitive to numerical errors.
Ghosal [1] shows that truncation errors from standard second
to eighth-order centred finite-difference schemes exceed sub-
grid model terms. Numerical experiments using schemes of
different order confirm that large-eddy simulations of turbu-
lent flows are susceptible to error from low-order numerical
schemes [3, 2]. The problem is avoided by using numerical
schemes with a modified wavenumber that approximates a spec-
tral scheme over as much of the resolved wavenumber range
as possible, such as spectral, Padé or specially-tuned finite-
difference schemes, provided that numerical errors due to alias-
ing are also controlled. An alternative is to apply the subgrid
model at a scale ∆ that is larger than the grid spacing h, while
filtering scales smaller than ∆ [1, 8]. Ghosal [1] shows that
the error from a standard eighth-order centred finite-difference
scheme is about an order of magnitude less than the subgrid
model terms for an overlap ∆/h = 2. For a fourth-order scheme,
the error is mostly less than the subgrid model term, except at
high resolved wavenumbers where it is of similar magnitude.

Numerical dispersion is another problem for large-eddy simula-
tions that use low-order low-dissipation numerical schemes. In
LES of turbulent mixing, numerical dispersion causes artificial
undershoots and overshoots of the scalar field [4]. These scalar
excursions are unphysical and are especially problematic in the
case of active scalars, such as temperature or density. But it
is not just scalar fields that are adversely affected. The group
velocity of finite-difference schemes that are used in LES are

negative at high wavenumber, and this can result in the flow do-
main being contaminated by spurious numerical waves [11, 12],
especially when there is little physical viscous dissipation, as is
usually the case in LES. Numerical dispersion can be controlled
by introducing some numerical dissipation or damping [9], but
this must be applied with care so as not to interfere with the
subgrid model.

The aim of this paper is to determine how much overlap ∆/h >
1 is needed to obtain self-consistent simulations of decaying
isotropic turbulence using the stretched-vortex model with a
fourth-order staggered finite-difference scheme and artificial
damping. Artificial damping is introduced by means of an addi-
tional term, similar to that used to control numerical dispersion
in computational aeroacoustics [10, 11], controlled by a damp-
ing parameter α. It is found that for certain combinations of ∆/h
and α, it is possible to obtain results that are independent of the
grid spacing h and also consistent with spectral simulations.

Computational model

The simulations in this paper are governed by the filtered
Navier–Stokes equations for incompressible flow with an added
artificial damping term, which are
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where x j and u j are Cartesian components of the Eulerian posi-
tion and velocity, respectively, p is the pressure, ρ is the density
(which is constant), τi j is the viscous stress tensor,
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and ν is the kinematic viscosity. The overline denotes
macroscale quantities that are solved for in the simulation. The
quantity in the second-to-last term of (1b) is the residual-stress
tensor,

τ
R
i j = uiu j−uiu j,

which accounts for the effects of the unresolved residual quan-
tities on the resolved macroscale flow. The last term in (1b) is
the artificial damping term, which is discussed below.

The residual-stress tensor is determined by the stretched-vortex
model of Misra & Pullin [6], which is
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where K is the subgrid kinetic energy and ev
i are the components

of a unit vector that is aligned with the subgrid vortex axis. The
subgrid kinetic energy is determined by

K =
∫
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E(κ)dκ, (3)



Figure 1: The one-dimensional Fourier transform of the damp-
ing function used in this paper (D4), compared with that
of the optimised σ = 0.3π damping function developed by
Tam & Shen [10].

where κ = (κiκi)
1/2 is the wave-number, κc = π/∆ is the cut-

off wavenumber, E(κ) is the spectrum of the Lundgren spiral
vortex,
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K0 is the Kolmogorov prefactor, ε is the local dissipation rate,
λ2

ν = 2ν/(3|a|) and a is the axial strain along the subgrid vortex
axis [13]. The group K0ε2/3 is calculated from
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instead of the usual second-order structure function [5]. The
rate-of-strain parameter a is obtained by assuming that the sub-
grid dissipation,

εsg = 2ν

∫
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κ
2E(κ)dκ, (6)

is equal to the transfer of kinetic energy from resolved to sub-
grid scales, that is,

εsg =−Si jτ
R
i j = Ka, (7)

where a = ev
i ev

jSi j is the component of the resolved rate-of-
strain tensor along the subgrid vortex axis [5]. Subgrid vortices
are assumed to align either with the principal extensional eigen-
vector of the resolved rate-of-strain tensor, Si j, or the resolved
vorticity vector, ω. The respective proportions are λ and (1−λ),
where

λ =
λ3

λ3 + |ω|
(8)

and λ3 is the principal extensional eigenvalue [2].

The governing equations (1) are discretised using fourth-order
finite-difference and interpolation operators on a staggered
grid [7]. The artificial damping term is

D(u j) =
αUa

hi
Di(u j), (9)

where hi is the grid spacing in the ith direction, α is a damping
coefficient, Ua is the characteristic velocity scale of the flow and
Di(φ) is the operator obtained by applying the interpolation op-
erator twice on φ in the ith direction and subtracting the result

Figure 2: Initial energy spectrum E(κ) for the reference spectral
simulation (blue) and three grid resolutions with ∆/h = 2 (red,
orange, purple). The solid lines are the macroscale spectra and
the dashed lines are the subgrid continuation of the spectrum as
determined by the model. The cutoff wavenumber κc for each
grid is indicated by the vertical lines.

from φ. This damping operator is convenient because the neces-
sary interpolation operators are already available in the numer-
ical implementation, but it is not optimal. Figure 1 shows that
this damping operator is a little more dissipative for intermedi-
ate wavenumbers than the optimised σ= 0.3π damping operator
developed by Tam & Shen [10].

The simulation domain is a cube with edge length L = 1. Sim-
ulations are run using grids of size N = 32, 64 and 128 with
uniform grid spacing h = 1/N and periodic boundary con-
ditions in each coordinate direction. The Reynolds number
based on the the characteristic velocity Ua = 1 and the edge
length of the cube is Re = 1012. At this Reynolds number,
there is almost no viscous dissipation by the resolved scales.
The explicit low-storage Runge–Kutta scheme recommended
by Williamson [14] is used for time stepping. A dealiased
Fourier spectral simulation with no artificial damping is used
as a reference simulation.

The initial velocity field is a random solenoidal vector field
whose energy spectrum is
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The parameter A is chosen so that the initial volume-averaged
kinetic energy is unity. The parameter κpeak is the wavenum-
ber at which the energy spectrum is maximum. This is set to
a low value of κpeak = 4π in order to create a reasonable ex-
tent of κ−5/3 for the coarsest grids, as is assumed in the deriva-
tion of (5), but this also means that the evolution of the flow is
likely to be affected by periodicity. The initial velocity field is
generated on a fine 2563 grid, which is filtered using a sharp-
spectral filter to create initial velocity fields for the grids used
in the simulations. This ensures that each simulation uses the
same initial condition, at least down to scales resolved by the
respective grids. Figure 2 shows the initial macroscale and sub-
grid energy spectra for each of the grids with ∆/h = 2. The
agreement between the subgrid and the macroscale spectra near
the cutoff wavenumber κc for the larger grid sizes verifies that
the model estimate of K0ε2/3 is accurate when the macroscale
spectrum is close to a κ−5/3 power law.



Results

The total volume-averaged kinetic energy is estimated by

1
2 〈uiui〉 ≈ 1

2 〈uiui〉+ 〈K〉

where 〈·〉 denotes the volume average. The first term on the
right hand side is calculated from the macroscale velocity that
is resolved on the computational grid, while the second term is
calculated from the subgrid model (3).

When a spectral method is used without artifical damping, the
total volume-averaged kinetic energy is almost independent of
grid size (figure 3a). This verifies that the model correctly in-
creases the subgrid kinetic energy to compensate for the de-
crease in resolved macroscale kinetic energy as the grid spacing
is increased when high-resolution numerical methods are used.
There is a 10% discrepancy in the early stages of the N = 32
spectral simulation, at which time the subgrid kinetic energy is
more than 20% of the total. This is consistent with the poorer
estimate of the subgrid spectrum for N = 32 in figure 2. Even
so, this discrepancy does not persist beyond t ≈ 0.15.

When the fourth-order finite-difference scheme is used in con-
junction with strong damping (α= 1) and no overlap (∆/h= 1),
the total volume-averaged kinetic energy is grid dependent and
different to that of the reference spectral simulation (figure 3b).
However, when more moderate values of the damping coeffi-
cient are used in conjunction with some overlap, it is possible
to obtain results that are less dependent on grid resolution and
more consistent with simulations using spectral methods. Fig-
ures 3(b) and 3(c) show that this is the case for the combina-
tions α = 0.1 with ∆/h = 1.6 and α = 0.3 with ∆/h = 2 when
N = 64 and 128. There is a discrepancy of up to 20% of the
total volume-averaged kinetic energy in the initial stages of the
N = 32 simulations, subsequently decreasing to less than 10%
as the flow evolves. Once again, the discrepancy occurs when
the subgrid kinetic energy is more than 20% of the total.

In the spectral simulations, there is evidence of some attenua-
tion of the macroscale spectrum at high resolved wavenumbers
in the form of a departure from a κ−5/3 spectrum (figure 4a).
However, this is mild when compared with the attenuation for
α = 0.3 with ∆/h = 2 (figure 4b), which is due to the com-
bined action of artificial damping and enhanced subgrid dissi-
pation for ∆/h > 1. Figure 4(b) shows that there is a substantial
jump between the resolved macroscale spectra and the subgrid
extensions for α = 0.3 with ∆/h = 2. Despite this, the sub-
grid spectra are only weakly dependent on the grid resolution.
This is also true for the combination α = 0.1 with ∆/h = 1.6,
which is not shown, but not all other combinations. There is a
noticeable difference between the subgrid spectra for α = 0.3
with ∆/h = 2 and those of the spectral simulation. This is not
unexpected, because the formula for K0ε2/3 (5), which deter-
mines the magnitude of the subgrid spectrum, assumes that the
macroscale spectrum follows a κ−5/3 power law near the model
cutoff κc, and that the cutoff at that wavenumber is sharp, which
is certainly not true for simulations with artificial damping and
overlap.

It is possible to estimate the contributions of the subgrid model
and the artificial damping term to the rate of dissipation of
macroscale kinetic energy by calculating the volume average
of (7) and estimating the time derivative of 1

2 〈uiui〉, respec-
tively. For α = 0.1 with ∆/h = 1.6, the subgrid model accounts
for about 70% of the macroscale kinetic energy dissipation. For
α = 0.3 with ∆/h = 2, the subgrid model accounts for about
60% of the dissipation.

Conclusions

Self-consistent simulations of decaying turbulence using the
stretched-vortex model with a fourth-order finite-difference
scheme and artificial damping are possible by appropriate
choice of overlap ∆/h and damping parameter α. However, the
simple damping operator used in this paper substantially alters
the macroscale spectrum and accounts for a significant fraction
of the macroscale kinetic energy dissipation.
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Figure 3: Turbulent kinetic energy 1
2 〈uiui〉 versus time t for (a) reference spectral simulation, (b) α = 1, ∆/h = 1.6, (c) α = 0.1,

∆/h = 1.6 and (d) α = 0.3, ∆/h = 2 at three grid resolutions, as indicated in the legend. The solid lines are the total turbulent kinetic
energy, which is the sum of the resolved and subgrid kinetic energy. The dashed lines are the subgrid kinetic energy.

(a) (b)

Figure 4: Energy spectra E(κ) at t = 0.3 for (a) reference spectral simulation and (b) α = 0.3, ∆/h = 2 at three grid resolutions, as
indicated in the legend. The solid lines are the resolved macroscale spectra and the dashed lines are the subgrid spectra, as determined
by the subgrid model. The subgrid spectra commence from the model cutoff wavenumber κ > κc = π/∆, while the macroscale spectra
continue to the maximum grid wavenumber κ < κmax = π/h, so there is some overlap.


