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Abstract

A numerical experiment using direct numerical simulation
(DNS) of the particular Couette-Poiseuille (C-P) flow in which
the pressure gradient dP/dx is adjusted to create zero mean skin
friction on the stationary wall is conducted. The quadrant anal-
ysis of the Reynolds stress is performed based on data from the
DNS with emphasis on the structures near the frictionless wall.
Reynolds structures are motions of the Reynolds stress u′v′ and
their structure is investigated by quadrant analysis which splits
the values of Reynolds stress into four quadrants (Qs). A fully
resolved case with Reynolds number equal to 2880 is used. The
Reynolds number Re is defined using the velocity of the moving
wall uwall , viscosity ν and the half channel height h. Statistical
and geometric characters of the Qs structures are investigated
and reported.

Introduction

We are interested in coherent structures of wall-bounded tur-
bulent flows in adverse pressure gradient (APG) environment
because they have significant importance in drag reduction and
separation control. The C-P flows are chosen to be studied as
the fully developed flow is independent of initial condition and
homogenous in streamwise and spanwise directions by its defi-
nition. C-P flow is the wall-bounded flows with a moving wall
and a stationary wall subjected to a pressure gradient. In the
first stage of our work[11], we investigated the effect of the size
of the computational domain on large-scale structures by ex-
amining the pre-multiplied energy spectra and length scales of
large-scale structures using data from DNS of C-P flows with
different computational domains. The object of present work
is to study coherent structures of the instantaneous Reynolds
stress.

The Reynolds stress is the reason of ’sweeps’ and ’ejections’
which are related to the burst phenomenon that creates most
of turbulent productions[4]. Several conditional sampling tech-
niques have been developed to study Reynolds stress structures
such as the VITA (variable interval time average)[2] and the
VISA (variable interval space average)[5] and have been evalu-
ated by Bogard et al. [3]. Base on the conclusion made by Bog-
ard, the quadrant analysis provides the best balance between the
probability of detection and false position.

In the quadrant analysis, the Reynolds stress is classified into
four quadrants based on the values of streamwise and wall-
normal velocity fluctuations (u′ and v′). Quadrants are defined
in the same way by Wallace et al.[10] as: Q1 events with u′ > 0
and v′ > 0, Q2 events (ejections) which have u′ < 0 and v′ > 0,
Q3 events with u′ < 0 and v′ < 0 and Q4 events (sweeps) with
u′ > 0 and v′ < 0. All Q events will be mentioned as Qs, Q2
and Q4 will be mentioned as Q−.

Numerical Method and Structure Identification Method

In the simulation, the Navier-Stokes equations for incompress-

ible flow are solved in the form of evolution equations for
the wall-normal vorticity and the Laplacian of the wall-normal
velocity[6]. The spectra method is used for spatial differenti-
ation and discretization including Fourier expansion with 2/3
dealiasing applied in streamwise and spanwise directions and
Chebychev polynomial in the wall-normal direction. The time
advancement scheme is the three-step Runge-Kutta scheme.
The detailed algorithm in the DNS is reported in [9, 8]. By
using this method, a case with Re = 2880 is simulated and the
parameters are summarized in table 1.

Following Lozano-Durán et al.[7], Reynolds structures are de-
fined as region satisfying

|u′(x,y,z)v′(x,y,z)|
urms(y)vrms(y)

> H, (1)

where urms and vrms are the root mean square velocity fluc-
tuations in streamwise and spanwise directions and H is the
hyperbolic-hole size. The quadrant analysis highly depends on
the value of H which is decided by a percolation analysis. A
proper value of H should be chosen at where the number of Qs
reaches its maximum and the ratio of the volume of the largest
structures and total detected structures is located in a reasonable
range. This means the largest structure is broken into separate
structures and the value of H is high enough. Each structure is
identified as a valid structure if the adjacent cells in the data set
can be grouped as a continuous region satisfying 1. In addition,
structures cross boundaries of the domain are rejected.

In our study, since we are interested in flow structures in the
region near the frictionless wall, we also reject the structures
whose the distance from the highest point to the moving wall
(2h−ymax) is smaller than the distance from the lowest point to
the stationary wall (ymin). This means we only take the struc-
tures which are closer to the stationary (frictionless) wall than
to the moving wall into consideration and 166 statistically inde-
pendent snapshots are used to study the structures.

Characterisation of Reynolds Structures

The result of the percolation analysis of identified Qs is shown
in figure 1. It shows the percolation behaviour with the change
of the hyperbolic-hole size H. When H < 0.9, the number of
objects increases and Vlargest/Vtotal remains roughly constant
which means the largest structure remains the same while other
structures break into smaller structures. With H continuously
increases, Nmax drops rapidly and there is a sudden drop in
Vlargest/Vtotal , which implies the largest structure starts to break
into separate structures and other structures start to be excluded
due to the high value of H. The threshold used in present work is
H = 0.9 where Nmax reaches it maximum and the largest struc-
ture starts to break. It is noticed that this percolation behaviour
is quite different compared with that of turbulent boundary lay-
ers [1] and turbulent channels [7], because the values of H at the
turning points of Vlargest/Vtotal and Nob jects/Nmax usually have



Case Re Lx Ly Lz Nx Ny Nz ∆x+ ∆z+ y+10 β

L2880 2880 8πh 2h 4πh 1280 257 1024 5.3 3.3 2.0 -672

Table 1: Parameters of the simulation. Lx, Ly and Lz are sizes of the domain in streamwise, wall-normal and spanwise directions. Nx,
Ny and Nz are numbers of grid points in each direction. ∆x+ and ∆z+ are the grid spacing in viscous length scale defined in terms of
the friction velocity uτ at the moving wall and the kinematic viscosity ν. y+10 is the distance of the 10th gird from the wall in viscous
length scale. β represents non-dimensional pressure gradient, β = hP/τ, where P is the pressure gradient and τ is the wal shear stress
at the stationary wall.
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Figure 1: Percolation analysis for the identification of Qs. The
blue line is the ratio of the volume of the largest structure
(Vlargest ) to the volume of all Qs (Vtotal). The yellow line is the
ratio of the number of identified Qs (Nob jects) to the maximum
number of Qs over H (Nmax).

a big gap so that the balance between the volume and number
of structures are hard to achieve.

The number of structures in each quadrant with respect to the to-
tal number of structures and the fraction of the volume of struc-
tures in each quadrant with respect to the total volume of the
total channel volume are presented in table 2. It turns out that
the number of Q− structures takes only 34% of total Qs. The
number of Q− structures is reduced by APG, but the percent-
age of its volume is higher, so Q− structures are not numerous
but larger in volume than Q+ structures. Q− structures are the
dominant structures rather than Q+ structures near the station-
ary wall.

The geometric prosperities of Reynolds structures can be exam-
ined by the joint probability density function (p.d.f). Figure 2
shows the joint p.d.f of the minimum and maximum wall dis-
tances of Q− structures. It shows that most structures evenly
distributed from the stationary wall up to channel center. Some
structures form near the stationary wall and cross deeply into the
opposite half of the channel occupying about 3/4 of the chan-
nel. Those very large structures are hard to see in the figure as
the number of them is small, but their length-scale is large.

Figure 3 shows joint p.d.f.s of sizes of Q− structures in stream-
wise lx, spanwise lz and wall-normal ly directions. From figure
3(a), we can see that the shapes of the most of Q− structures are
long in streamwise direction but short in wall-normal direction.
It seems APG restrains the sizes of Q− structures in streamwise
direction but extends the sizes of them in wall-normal direc-
tion. In figure 3(b), the dark area is less concentrated than that
in figure 3(a). This indicates that there is no strong correlation
between lz and ly. Figure 3(c) shows the distribution of the as-
pect ratio of Q− structures. Despite some structures have lz up
to 10 times of ly, the ratios of the spanwise size to the wall-
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Figure 2: Joint probability density function of the maximum
and minimum wall distances of Q− structures, p(ymin,ymax).
Contour levels are shown for 10, 1 and 0.1 from darker to
lighter.

normal size of the most of structures are distributed around 0.5
while the ratios of the streamwise size and the wall-normal size
are around 1. This agrees with that those structures have larger
streamwise size than the spanwise size. The distribution in fig-
ure 3(d) is roughly as same as figure 3(b). The average length
of Q− structures in streamwise 〈lx〉, wall-normal

〈
ly
〉

and span-
wise 〈lz〉 directions and the average minimum and maximum
distance of Q− structures from the frictionless wall (〈ymin〉 and
〈ymin〉) are shown in table 3. On average, the streamwise sizes
of the structures are about 2 times larger than their wall-normal
sizes and the spanwise sizes are a bit larger than the wall-normal
sizes.

Conclusions

Instantaneous Reynolds stress structures have been studied via
quadrant analysis in a C-P flow with APG adjusted to create
zero mean wall shear stress using DNS. The structures are iden-
tified by setting a threshold H to the local Reynolds stress and
the appropriate value of the threshold is discussed based on per-
colation theory. The statistics of Reynolds structures in each
quadrant are examined. In the region above the frictionless wall,
The ratio of the number of Q− to the number of Q+ is roughly
1 : 1.8 but the ratio of their volumes is approximately 4 : 1. The
distribution and geometric properties of Q− structures are de-
picted by joint p.d.f.s. Some structures can occupy about 75%
of the total channel hight. APG restrains the sizes of Q− struc-
tures in streamwise direction and extends the sizes of them in
wall-normal direction. The mean size of Q− structures in each
direction and the aspect ratio is discussed.
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Case N1 N2 N3 N4 V1 V2 V3 V4
L2880 0.32 0.17 0.34 0.17 0.019 0.084 0.013 0.084

Table 2: Number of structures in each quadrant with respect to the total number of structures (N1−4) and the volume of structures in
each quadrant with respect to the total channel volume (V1−4).
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Figure 3: Joint p.d.f.s of sizes of Q− structures in streamwise lx, spanwise lz and wall-normal ly directions. (a) p(lx, ly). (b) p(lz, ly).
(c) p(lx/ly, lz/ly). (d) p(lx, lz). Contour levels of (a), (b) and (d) are shown for 10, 1 and 0.1 from darker to lighter. Contour levels of
(c) are shown for 0.1, 0.05 and 0.01.

〈lx〉
〈
ly
〉

〈lz〉 〈ymin〉 〈ymax〉
0.529 0.237 0.310 0.283 0.519

Table 3: Mean sizes of Q− structures in streamwise 〈lx〉, wall-
normal

〈
ly
〉

and spanwise 〈lz〉 directions and the average mini-
mum and maximum distance of Q− structures from the friction-
less wall (〈ymin〉 and 〈ymax〉). All the values are scaled by the
half channel hight h
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Figure 4: The instantaneous visualization of Qs structures including Q1-4 (a), Q+ structures (b) and Q− structures (c) coloured by the
distance from the stationary wall (blue to red). The threshold of the isosurfaces is H = 0.9. The flow is from left to right.
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