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Abstract

An asymptotic analysis is used to investigate the effects of sur-
face cooling on the linear stability of a compressible boundary
layer in hypersonic flow over a wedge. The derivation of the
asymptotic structure relevant to the level of cooling applied to
hypersonic vehicles is presented. Starting from previous results
for supersonic flow, our analysis reveals that for hypersonic flow
a reduction in surface temperature produces a region of large
heat transfer and surface skin friction in the unperturbed bound-
ary layer that leads to deformation of the classical triple-deck
scales and a first new asymptotic structure emerges. Moreover,
as the wall temperature is lowered further, to values of recent
experiments of hypersonic flows, the upper region of the triple-
deck structure collapses onto the main tier of the middle zone.
The linear stability analysis of this second asymptotic stucture
is presented.

Introduction

Efficient design of new high-speed vehicles is critically depen-
dent on accurate knowledge of the behaviour of instabilities at
hypersonic speeds. In particular, the ability to control the sur-
face temperature of a hypersonic vehicle is a crucial aspect in
controlling and delaying the transition from laminar to low-level
free-stream turbulent flow. When this transition occurs it in-
evitably leads to a large increase in drag and surface tempera-
ture and consequent severe drop in overall performance.

It is well known [6] that the transition of hypersonic flow over
smooth bodies to low-level free-stream turbulence occurs pre-
dominantly through either of two mechanisms. The so-called
first Mack mode (lower-branch of neutral curve) is the high-
speed counterpart of Tollmien–Schlichting waves, so is essen-
tially a viscous travelling wave instability located close to the
boundary. In this work we shall concentrate on Tollmien–
Schlichting waves governed by a triple-deck structure. On the
other hand, the second Mack mode (upper-branch of neutral
curve) is inviscid in nature and occupies a greater proportion
of the overall flow. The exact characteristics of any particular
problem dictates whether it is the first or second Mack mode
that possesses the greater growth rate and thus potentially dom-
inates. First Mack modes are of particular interest since they
may be excited by roughness effects.

The analysis of the stability of the Blasius boundary layer on
a flat plate involving the triple-deck structure was introduced
by Smith [10] for incompressible viscous flows using a formal
matched-asymptotic-expansion approach for large Reynolds
number. This work was later extended to compressible viscous
flow past a wedge of small angle by Cowley and Hall [1] who
also studied the effects of the attached shock. Their methods
are the ones we follow in this article.

Recent studies on the effect of wall cooling in high-speed
boundary layers [2, 7] have shown that localized cooling de-
creases the second-mode amplification and delays transition to

turbulence. The effect of cooling on the linear stability of sub-
sonic and supersonic boundary layers was considered by Sed-
dougui et al. [9], who identified a new asymptotic regime for
so-called “moderate cooling” where viscous modes were found
to be destabilized. Moderate cooling introduces a sublayer in
the basic flow close to the surface, that acts as a buffer layer,
where large heat transfer and skin friction gradients occur. This
process is required to reduce the high temperature in the bound-
ary layer to the low temperature on the surface. This new sub-
layer, in turn, distorts the lower-branch Tollmien–Schlichting
modes so as to increase their growth rates such that they be-
come comparable with, or even exceed, those of inviscid modes.
Moreover, it was shown in [9] that even at the so-called “moder-
ate stage”, cooling completely destabilizes otherwise stable vis-
cous modes for any obliqueness of wave-angle, including the
two-dimensional case. This is in contrast with the uncooled
work of Smith [11]. Thus, first Mack modes may be important
in the transition process in cooled high speed boundary layers
and these are the focus of our current investigation.

The aim of the paper is to determine the structure of the
boundary-layer flow for surface temperatures relevant to prac-
tical surface cooling in hypersonic flows. Our interest is in the
theoretical solutions of this problem for instability modes which
may promote transition to turbulence in hypersonic flows.

Basic Flow

The basic steady hypersonic flow whose stability we investi-
gate consists of a compressible, viscous, perfect gas of constant
velocity Û over a wedge of small semi-angle θ. The wedge
is symmetrically aligned with an oncoming flow with velocity
magnitude Û . Shocks of semi-angle σ develop from the tip of
the wedge and the acute angle between the shock and the wedge
is φ = σ−θ. Introduce a Cartesian coordinate system (x̂, ŷ, ẑ),
where x̂ is the distance along the upper surface of the wedge,
ŷ the distance normal to the wedge face and ẑ is the spanwise
coordinate and let (û, v̂, ŵ) denote the corresponding velocities
and t̂ the time. Quantities upstream of the shock are indicated
by the subscript u and quantities in the so-called shock-layer
between the shock and the wedge by the subscript s. Assume
the fluid has an upstream Mach number Mu given by

Mu = Û/au; a2
u = γ(p̂u/ρ̂u) = (γ−1)ĥu,

where p̂u, ρ̂u denote the pressure and density, respectively, γ =
cp/cv the ratio of specific heats, with cp being the specific heat
at constant temperature, au is the speed of sound in the upstream
flow, ĥu = cpT̂ is the enthalpy and T̂ is the temperature of the
fluid.

Overall, the basic flow satisfies the compressible continu-
ity, Navier-Stokes and heat-flux equations and they are non-
dimensionalized using the flow quantities between the shock
and the wedge surface. Let (x̂, ŷ, ẑ) = L(x,y,z) and (û, v̂, ŵ) =
Ûs(u,v,w), where the length scale L is the distance from the tip
of the wedge to the location of interest and Ûs is the magnitude



of the fluid velocity in the region between the shock and the
wedge defined in equation (1). Time is non-dimensionalized
with respect to L/Ûs, pressure with respect to ρ̂sÛ2

s and the
other variables with respect to their values in the shock layer.
The Reynolds number is defined by

Re = ρ̂sÛsL/µ̂s,

where µ̂s is a typical value of the viscosity. Away from the sur-
face of the wedge viscous effects are neglected and the fluid
velocities (û, v̂, ŵ), the pressure p̂ and the density ρ̂ satisfy the
compressible Euler equations. This inviscid solution is well
known (see for example [4], [1]). One important feature is that
it is uniform between the wedge and the shock and given by

Ûs = Û
(
1+ ε

2 tan2
σ)1/2 cosσ, (1)

where σ = θ+ θs and ε = ρ̂u/ρ̂s, the ratio between the fluid
density upstream of the shock and that in the shock layer. If ε is
assumed to be small, then the density can be taken as constant
in the shock layer. In this case the shock layer is thin and the
viscosity µ may also be taken as constant with µ = µs.

Since the inviscid flow solution (1) specifies a non-zero slip
velocity along the wedge, a boundary-layer region has to be
introduced close to the surface in order to satisfy the viscous
no-slip condition. Assuming y = Re−1/2ȳ and letting Re→ ∞

in the Navier-Stokes equations, we obtain at leading order the
boundary-layer equations for compressible flow (e.g. [12]). We
have ρT = γ M2

s P and the power-law form

µ =CT n, (n > 0),

of the temperature-viscosity law, where C is a constant. Note
that n = 1 corresponds to Chapman’s law, while n = 1/2 gives
Sutherland’s law. The boundary conditions on the boundary-
layer equations are the no-slip condition U = V = 0 on ȳ =
0 and prescribed constant temperature T = Tw at the wall and
matching with the external inviscid flow, U→Ue, T → Te, ρ→
ρe, as ȳ→ ∞, where the subscript e denotes external inviscid
values obtained from the solution to the Euler equations. It is
possible to obtain similarity solutions of the steady boundary-
layer equations of the form

U = dFB(ξ)/dξ and T = HB(ξ),

where ξ is the Dorodnitsyn-Howarth variable defined as
ȳ = x1/2 ∫ ξ

0 HB(s)ds and FB and HB are Blasius type functions
[12].

Effects of Surface Cooling

One of the effects of surface cooling is felt through the changes
that occur in the mean-flow and mean-temperature profiles, U0
and T0, near the surface of the wedge, inducing large values of
the heat-transfer and skin-friction coefficients. To see this con-
sider the basic-flow momentum and heat-flux equations which
are dominated by their viscous contributions near the surface.
Introducing the scale

Sw = Tw/M2, (2)

where M is the Mach number just behind the shock, the
boundary-layer equations with ȳ = S1+n

w ỹ, give the following
balances

∂

∂ỹ

(
T̃ n

B
∂ŨB

∂ỹ

)
= 0,

∂

∂ỹ

(
T̃ n

B
∂T̃B

∂ỹ

)
= 0.

Integration then gives

ŨB =
c2

c1

{[
1+c1(1+n)ỹ

] 1
1+n −1

}
, T̃B =

[
1+c1(1+n)ỹ

] 1
1+n ,

where c1, c2, are O(1) constants. Therefore, one of the effects
of surface cooling is to introduce a buffer layer such that the
skin friction and scaled heat transfer(

∂ŨB

∂ỹ

)
ỹ=0

=
c2

M1+nSn
w
,

(
∂T̃B

∂ỹ

)
ỹ=0

=
c1M2

M1+nSn
w
, (3)

are substantially increased. These results are consistent with the
work of Seddougui et al. [9] on surface cooling of subsonic and
supersonic flows over a flat plate.

Triple-Deck Equations

The linear stability of the boundary-layer flow has been ex-
tensively studied (in the absence of the shock) using the
Orr-Sommerfeld quasi-parallel approximation (Mack [5, 6]).
However, the mathematical theory used to obtain the Orr-
Sommerfeld equation is inconsistent in that the Reynolds num-
ber has been assumed to be simultaneously asymptotically large
(in order that the basic flow is approximated by a parallel shear)
and also of order unity so that a critical value of the Reynolds
number can be calculated.

Smith [10] developed a self-consistent asymptotic framework
for the description of the lower branch of the linear neutral
stability curve for Tollmien–Schlichting waves of the viscous–
inviscid type in an incompressible fluid. This high-Reynolds
number asymptotic approach provides a mathematically con-
sistent and rational method to incorporate linear growth (un-
steadiness), non-parallelism and nonlinearity. The theory was
later extended to compressible flows by Smith [11]. In this case
the first modes of instability are three-dimensional waves di-
rected outside of the local wave-Mach-cone directions, that is,
the wave angle θ must satisfy θ > tan−1

√
M2

∞−1, where M∞

is the free-stream Mach number.

The asymptotic framework is based on the triple-deck struc-
ture developed some years earlier to explain the process of
“self-induced separation”. The triple-deck formulation assumes
that, at large Reynolds numbers, the normal y-variation of
the Tollmien-Schlichting disturbances comprises three main re-
gions, each with its own characteristic scale: (a) the viscous
sub-layer referred to as the lower deck, (b) the main deck com-
prising most of the boundary layer and (c) the upper deck con-
sisting of potential flow just outside the boundary layer. It is
assumed that the triple-deck structure lies in a weak interaction
region defined by

χ = Re−1/2 M2+n� 1,

where χ is the hypersonic interaction parameter [12]. To study
the effect of the shock on the instability waves without the ef-
fects of non-parallelism, the so-called Newtonian approxima-
tion (γ−1)� 1 must be made.

The asymptotic scalings may be obtained from [12] but ex-
tended to three-dimensional unsteady hypersonic motion. For
moderate surface cooling they are an extension of [9] with con-
sideration of the attached shock. Strange [13] studied the sta-
bility of Tollmien–Schlichting waves in the regime Re � 1,
M2� 1, Tw� 1 without the effects of an attached shock. Since
it is known for hypersonic flow that Tw = O(M2) for the adia-
batic case, we shall consider the regime

Sw� 1,

where Sw is defined in equation (4). The streamwise and span-
wise length scales and the time scale are given throughout the



three decks by(
x− x0,z− z0

)
=Re−

3
8 S

1+2n
2

w
(
M

12+3n
4 X ,M

8+3n
4 Z
)
,

t =Re−
1
4 Sn

w M
4+n

2 t̃.

Introducing the constant c3 = (C/c2)
1/3 the triple-deck struc-

ture for the linear stability problem may now be specified as
follows:
Lower deck. The overall three-dimensional behaviour of the
Tollmien–Schlichting waves is governed by the lower-deck
equations and boundary conditions. This is the region in which
viscous effects are important and the nonlinearity of the prob-
lem appears in this layer. The scales for the leading-order terms
are given by

y = Re−
5
8 S

1+2n
2

w M
8+5n

4 c3 Y u = Re−
1
8 S

1
2
w M

4+n
4 c2 c3 U

v = Re−
3
8 S

1
2
w M

3n
4 c2 c2

3 V w = Re−
1
8 S

1
2
w M

n
4 c2 c3 W

p = p∞ +Re−
1
4 M

n
2 c2

2 c2
3 P ρ = S−1

w M−2R.

(Note that the factors of c2 and c3 are included in the expan-
sions above and below to simplify the resulting equations to be
solved.) These scales lead to the three-dimensional unsteady
nonlinear boundary-layer equations (e.g. see [9]) subject to
the no-slip boundary conditions U = V =W = 0 at the surface
Y = 0 and the condition U ∼ Y +A(X ,Z, t̃), W → 0, Y → ∞

to match with the buffer layer detailed below. The function
A = A(X ,Z, t̃) is an unknown displacement independent of ȳ.
Middle deck. The middle deck covers the extent of the undis-
turbed boundary layer and consists of three sub-layers:

(a) Transition layer of thickness

y = Re−
1
2 M1+n ȳ∞ = Re−

1
2 yi,

whose exact structure depends on the viscosity-temperature
law. The transition layer adjusts the O(M2) temperature in the
boundary layer to O(1) in the free stream.

(b) Buffer layer of thickness y = Re−
1
2 M1+n S1+n

w ỹ required
to reduce the large temperatures in the boundary layer to the
smaller value of the surface temperature.

(c) Main tier with leading order terms given by

y = Re−
1
2 M1+n ȳ

u =U0(ȳ)+Re−
1
8 S

1+2n
2

w M
4+n

4 c3 A
dU0

dȳ

v = −Re−
1
4 M

n−2
2 c3

dA
dX

U0(ȳ)

w = Re−
1
4 M

n−2
2 c2

2 c2
3

D
R0(ȳ)U0(ȳ)
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1
4 M

n
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2 c2
3 P
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1
8 M
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4 S
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2
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dȳ
.

Upper deck. In this layer the basic flow quantities take their
free-stream values. The scalings are given by

y = Re−
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2
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Figure 1: Schematic diagram showing the new cooled-structure
of the main tier for n = 1.

Shock boundary conditions. To complete the definition of
the problem we need to specify the boundary conditions at the
shock which we suppose to be located at ȳ = ȳs. To ensure
that the effects of the shock are included, the scalings are cho-
sen so that it occurs in the upper deck of the triple-deck struc-
ture. Cowley and Hall [1] obtained general jump conditions at
a shock for incident linearized inviscid waves that led to the
boundary condition

p̄ = 0 at ȳ = ȳs.

The presence of the shock allows for an infinite discrete spec-
trum of unstable modes which are unstable over a relatively
small distance and a high frequency range.

New Cooled Structure

The main effect of wall surface cooling occurs through the Sw
factors in the scales given above, which result in the reduction
in size of the thickness of all the layers, as might be expected
physically. In particular the streamwise length and the max-

imum normal distance both decrease like S
1+2n

2
w , with similar

deformations occurring in the lower-deck thickness. Consider-
ation of the level of wall cooling applied in recent experiments
investigating transition to turbulence in hypersonic flow reveals
that further cooling needs to be applied to the system outlined
above to be appropriate to the experimental surface tempera-
tures. Thus, rather than solving the system just described at-
tention will be focused on the case of further cooling. As the
wall temperature is lowered to levels appropriate to hypersonic
vehicles (where typically the ratio of the wall temperature to
the adiabatic temperature is less than about 0.3) an additional
asymptotic structure appears. In this case the upper-deck struc-
ture collapses onto the main tier of the middle deck and a new
asymptotic structure emerges, as depicted in figure 1 (shown for
n = 1). The collapse happens when the scales of the thickness
of these these two layers coincide, that is,

O
(

Re−
3
8 S

1+2n
2

w M
8+3n

4

)
= O

(
Re−

1
2 M1+n

)
,

which gives

Sw = Re−
1

4(1+2n) M−
4−n

2(1+2n) S̃w, (4)

where S̃w is of order 1.

Considering Sw defined by equation (4), the expansions in the
new main tier are now

y = Re−
1
2 M1+n ȳ u =U0(ȳ)+Re−

1
4 M

n
2 S̃

1+2n
2

w c3 Aū

v = −Re−
1
4 M

n−2
2 c3 v̄ w = Re−

1
4 M

n−2
2 c2

2 c2
3 w̄

p = p∞ +Re−
1
4 M

n
2 c2

2 c2
3 p̄ ρ = R0(ȳ)+Re−

1
4 M

n
2 S̃

1+2n
2

w c3 A ρ̄.



These scalings in the main tier lead to the compressible pressure
equation (

1−M2
0
)

p̄XX + p̄ȳȳ + p̄ZZ = 2M0ȳ p̄ȳ/M0, (5)

where M0 =U0Mρ
1/2
0 . The boundary conditions on p̄ are

p̄∼ P+
1+n
2+n

τ AXX ȳ
2+n
1+n as ȳ→ 0, (6)

and
p̄ ′ ∼ ȳ∞− ȳ as ȳ→ ȳ∞, (7)

where ȳ∞ is the scaled boundary-layer edge. Condition (7)
reflects the match with the oncoming undisturbed free-stream
flow and (6) is needed for matching with the buffer tier. The
O(1) parameter τ is the cooling factor defined by

τ =
c1/3

2 21/2 T̃ 2
w

c3/2
1 C1/3

, where Tw = Re−
1

4(1+2n) T̃w. (8)

Linear Stability Analysis for New Cooled Structure

We adopt the method of Smith [10] who implemented a weakly
nonlinear analysis of an incompressible Blasius boundary layer
to Tollmien-Schlichting waves by considering normal mode dis-
turbances proportional to

E = exp
[
i(αX +βZ−Ωt̃)

]
,

where α and β are the streamwise and spanwise wavenumbers
and Ω is the frequency. Assuming a solution of the form

(U,V,W,P,A, p̄) = (Y,0,0,0,0)

+
[
h(Ũ ,Ṽ ,W̃ , P̃, Ã, p̃)E + c.c.

]
+O(h2), (9)

for h� 1 and substituting into the lower-deck equations, yields
the relation

P̃
Ã
=

(iα)−1/3

(1+β2/α2)

[
Ai′(ξ0)

/∫
∞

ξ0

Ai(s)ds
]
, ξ0 =−i1/3

Ω/α
2/3,

(10)
and Ai(ξ) is the Airy function. Next, substituting the expression
for the pressure into the main-tier pressure equation (5) we are
left with solving the quasi-steady compressible Rayleigh equa-
tion,

p̃ ′′−
2M′0
M0

p̃ ′−
[
α

2(1−M2
0)+β

2] p̃ = 0, (11)

where M0 = U0 M/
√

T0 and the prime denotes differentiation
with respect to ȳ. The appropriate boundary conditions are

p̃ ′ ∼−α
2

τ ȳ
1

1+n as ȳ→ 0, (12)

and
p̃ ′ ∼ ȳ∞− ȳ as ȳ→ ȳ∞. (13)

Therefore, the linear stability of the new cooled system is given
by the solution to equation (11) with the boundary conditions
(12) and (13). The numerical solutions of this system is the
focus of our current effort.

Conclusions

We have shown that a reduction in surface temperature leads
to a region of large heat transfer and surface skin friction in
the unperturbed boundary layer as indicated by the expressions
(3), leading to deformation of the classical triple-deck scales.

As the wall temperature is lowered further to levels appropri-
ate to hypersonic flow, the upper region of the so-called triple-
deck structure collapses onto the main tier of the middle zone
and a new asymptotic structure emerges, as shown in figure
1. Strong interaction and non-parallelism have been neglected
which places certain limits on the range of validity of the anal-
ysis [1]. Note, that it is expected that non-parallel flow effects
will be insignificant.

The next stage of this study involves finding neutral and un-
stable solutions by solving the pressure equation (11) subject
to the boundary conditions (12) and (13). Our methods have
been guided by the numerical and asymptotic methods of [9]
and [13].

Our intention is to extend this analysis to include passive porous
walls [3] to determine their effect when significant levels of sur-
face cooling are applied.
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