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Abstract

Centrifugal buoyancy driven convection is closely related to
Rayleigh–Bénard convection, and offers another approach to
the ultimate regime of thermal convection. Here, we perform
direct numerical simulations (DNSs) of centrifugal convection
in a cylindrical shell rotating about its axis at constant angular
velocity. The walls undergo solid-body rotation, and the flow
is purely driven by the temperature difference between the cold
inner wall and the hot outer wall. We invoke the thin-shell limit
where radial variations in centrifugal acceleration can be ne-
glected. The Prandtl number is 0.7 corresponding to air. For
this setup we have two input parameters: 1) the Rayleigh num-
ber Ra characterising the driving by centrifugal (buoyancy) ef-
fect, and 2) the Rossby number Ro characterising the Coriolis
effect. Here, we vary Ra from 107 to 1010, and the inverse
Rossby number Ro−1 from 0 (no rotation) to 1. We find that the
flow dynamics is subjected to an interplay between the driving
buoyancy force and the stabilising Coriolis force, similar to that
of Chong et al. (Phys. Rev. Lett., vol. 119, 2017, 064501),
but with an important difference owing to the different axis of
rotation. Instead of the formation of highly coherent plume-like
structures at optimal condition that maximises heat transport,
here, the formation of strong bidirectional wind at optimal con-
dition (Ro−1

opt ≈ 0.8) minimises heat transport. By increasing
Ra at Ro−1

opt, the mean flow approaches the Prandtl–von Kármán
(logarithmic) behaviour, yet full collapse on the logarithmic law
is not reached at Ra = 1010.

Introduction

The ultimate regime of thermal convection remains difficult
to observe, especially in Rayleigh–Bénard convection [1, 2]
in which the flow is driven by heating from below and cool-
ing from above. The ultimate regime occurs beyond a criti-
cal high Rayleigh number Ra∗, when the whole flow, including
the thin boundary layers, become dominated by inertia [3, 4].
Ra∗ depends on Prandtl number Pr, domain of study (e.g. en-
closed cylinder, enclosed box or periodic box), and domain
aspect ratio. For instance, at Prandtl number Pr ≈ 0.7− 0.9,
for cylindrical container with aspect ratios D/L = 0.5 and 1.0
(where D and L are the cylinder diameter and height), the ul-
timate regime occurs beyond Ra∗ ≈ 1014 [5, 6]. In the ulti-
mate regime both momentum and thermal boundary layers fol-
low Prandtl–von Kármán (logarithmic) behaviour, and the ef-
fective heat-transfer scaling, encapsulated by the Nusselt num-
ber Nu to Rayleigh number Ra relationship, follows a steeper
gradient (e.g. Nu ∝ Ra0.38 [7]) compared to the classical regime
(Ra < Ra∗), where Nu ∝ Ra0.31 [4].

To date, observing the logarithmic boundary layer in Rayleigh–
Bénard convection, and consequently the ultimate regime, re-

mains challenging, both in experiments and numerical simu-
lations. The highest achievable Ra in experiments is Ra ≈
1015 [6], and in three-dimensional numerical simulations is
Ra ≈ 1012 [8]. A challenge in experiments is non-Oberbeck–
Boussinesq effects [6], i.e. the temperature variation of the fluid
properties, and the main challenge in the numerical simulations
is the computational cost [9], e.g. increasing Ra by 10 times at
Pr = 0.7 increases the CPU hours by about 24 times.

Studies have attempted to reach the ultimate regime in closely
related flows, or by introducing a secondary effect to the
Rayleigh–Bénard convection. These efforts include: 1) intro-
ducing shear [10], which induces an artificial wind to the flow;
2) investigating vertical natural convection which has a stronger
wind than in Rayleigh–Bénard flow [11]; 3) performing two-
dimensional numerical simulations of Rayleigh–Bénard con-
vection [12]; or 4) considering a low-Prandtl-number Rayleigh–
Bénard convection [13]. Here, we consider a centrifugal buoy-
ancy driven convection as another approach to the ultimate
regime. Unlike vertical natural convection, where the wind
is set only by the Rayleigh number, in centrifugal convection
the Rossby number enters as an additional control parameter to
‘tune’ the wind strength. And unlike sheared Rayleigh–Bénard
convection, in which shear and buoyancy act as two separate
driving mechanisms, in centrifugal convection buoyancy is the
only driving mechanism; the Coriolis force simply reorganises
the flow. In other words, there is no flow if Ra = 0.

Flow setup

Governing Equations

We consider a fluid with density ρ, kinematic viscosity ν,
thermal conductivity κ, and thermal expansion coefficient β.
The governing equations are derived from the incompressible
Navier–Stokes equations governing the flow in a concentric
cylindrical annulus with gap H (figure 1a) in the frame rotating
in clockwise direction about its cylindrical axis ζ at constant
rotational speed Ω, as described by velocity v = vrer + vφeφ +
vζeζ, and temperature T in cylindrical coordinates (r,φ,ζ). The
boundary conditions in this rotating frame are no-slip and im-
permeable walls, v(r = R−H) = v(r = R) = 0, corresponding
to the inner and outer walls, respectively, and isothermal walls
with the prescribed temperature difference ∆T = TH −TL, with
T (r = R−H) = TL and T (r = R) = TH , corresponding to an
inner colder wall and an outer hotter wall. We have invoked the
Oberbeck–Boussinesq approximation, which assumes constant
fluid properties, ν, κ and β, and that density variations are only
dynamically important in the buoyancy term. In the buoyancy
term the density variation is (ρ− ρo) = −βρoθ, where ρo =
ρ(To = (TH +TL)/2), the reference density at temperature To,
and θ = T −To, the temperature variation relative to To. For the



Figure 1: Setup of flow: (a) Centrifugal buoyancy-driven con-
vection in concentric cylinder with gap H and outer cylinder
radius R. The two cylinders undergo clockwise rotation about
their axis ζ, with rotational speed Ω. Outer cylinder (
) is hotter than the inner cylinder ( ); (b) the computa-
tional domain as a small chunk of the concentric cylinder, with
H � R, (the grey cube in a), which is rectilinear, and Lx and
Ly are the domain sizes in the streamwise (circumferential) and
spanwise (axial) directions.

sake of brevity we refer the reader to [14] for the equations in
the (r,φ,ζ) coordinate system. Since the equations are presented
in a rotating frame, two additional terms appear in the Navier–
Stokes equations: the Coriolis force −2Ωvφer + 2Ωvreφ, and
the centrifugal acceleration, −βΩ2rθer.

To further simplify the problem, we consider the thin-shell
limit, ε ≡ H/R� 1 (figure 1b). To this end, we transform the
equations from (r,φ,ζ) into curvilinear coordinates (x,y,z) with
the origin placed at the outer cylinder. The transformed coordi-
nates will be x = rφ,y = −ζ,z = R− r, and the transformed
velocity will be u = vφ,v = −vζ,w = −vr. Then, we non-
dimensionalise the variables using the gap width H, the free-
fall velocity U ≡ (Ω2Rβ∆T H)1/2, and ∆T : x̃ = x/H, ỹ = y/H,
z̃ = z/H, t̃ = tU/H are the scaled space and time coordinates,
ũ = u/U , ṽ = v/U , w̃ = w/U are the scaled velocity compo-
nents, and p̃ = (p−ρoΩ2R2/2)/(ρoU2) and θ̃ = θ/∆T are the
scaled pressure and temperature variation. Substituting these
into the transformed equation, and expanding in small ε, we ob-
tain, to leading order:

∇̃·ũ = 0 (1)

∂t̃ ũ+ ũ·∇̃ũ =−∂x̃ p̃+(Ra/Pr)−1/2
∇̃

2ũ−Ro−1w̃, (2)

∂t̃ ṽ+ ũ·∇̃ṽ =−∂ỹ p̃+(Ra/Pr)−1/2
∇̃

2ṽ, (3)

∂t̃ w̃+ ũ·∇̃w̃ =−∂z̃ p̃+(Ra/Pr)−1/2
∇̃

2w̃+Ro−1ũ+ θ̃, (4)

∂t̃ θ̃+ ũ·∇̃θ̃ = (RaPr)−1/2
∇̃

2
θ̃ (5)

Since x̃ = O(1) and ỹ = O(1), the thin shell limit implies x� R
and y� R, i.e. the computational domain is a small chunk of
the concentric cylinder (figure 1a, the grey cube). In this thin-
shell limit (1)-(5) are identical to the Navier–Stokes equations
in the Cartesian coordinate system. These equations reveal that
this flow is characterised by three non-dimensional numbers:
1) Rayleigh number Ra≡ (Ω2Rβ∆T H3)/(νκ), 2) Rossby num-
ber Ro≡U/(2ΩH) = (β∆T R/H)1/2/2, and 3) Prandtl number
Pr ≡ ν/κ. Due to the choice of free-fall velocity U for scal-
ing, Ro does not depend on Ω. However, the terms −Ro−1w̃
and Ro−1ũ on the right-hand side of equations (2) and (4) still
represent the Coriolis effect. The results are presented in terms
of (x,u), (z,w) and (y,v), the circumferential, radial and axial
directions of the cylindrical shell, respectively, and are noted as
the streamwise, wall-normal and spanwise directions. The in-
ner and outer walls of the cylindrical shell are also noted as the
top and bottom walls, respectively.

Ra N3 (∆x/η)max (∆y/η)max (∆z/η)max
107 1283 1.9 1.9 1.3
108 2563 2.1 2.1 1.5
109 5123 2.1 2.1 1.6
1010 5123 6.5 6.5 4.6

Table 1: Summary of number of grid points N and resolu-
tion quality, based on the maximum ratio of the local grid
size over the local Kolmogorov length-scale, η(z) =

(
ν3/ε

)1/4,
where ε, the turbulent dissipation-rate, is averaged over time
and in the xy−plane. For each Ra, six Ro−1 was attempted:
Ro−1 = (0,0.3,0.5,0.6,0.8,1.0). For all cases Pr = 0.7 and
Lx/H×Ly/H = 1×1.

Direct Numerical Simulation

Equations (1)-(5) were solved over a rectilinear box (figure 1b)
with periodic boundary conditions imposed to the streamwise
and spanwise directions. The top and bottom wall boundary
conditions are ũ(z̃ = 0) = ũ(z̃ = 1) = 0, θ̃(z̃ = 0) = 1/2 and
θ̃(z̃= 1)=−1/2. The equations are solved using a fully conser-
vative fourth-order finite difference code, validated in the pre-
vious DNS studies of similar flow physics [11]. Table 1 lists all
the simulation cases. For all cases Pr = 0.7, Lx/H ×Ly/H =
1× 1, and the same number of grid points, N, is used in the
three directions. The grid points are uniformly distributed in
the x− and y−directions, and are stretched in the z−direction
following [9]. In total, four Ra were simulated, ranging from
107 to 1010, and at each Ra, the inverse Rossby number Ro−1

was varied from zero (no Coriolis force) to unity (large Coriolis
force). The appropriateness of the grid resolutions are assessed
in Table 1 which lists the grid sizes relative to the Kolmogorov
length-scale η. Since η varies with z, the maximum ratio of lo-
cal grid size compared to local η, which occurs at the walls, is
reported. At all Ra the maximum grid spacing is 2η, except at
Ra = 1010. However, grid convergence study at the lower Ra
reveals that the difference between the grid spacing of 6η and
2η, in terms of the Nusselt number, mean and r.m.s. quantities
is less than 4%.

Results

The resulting Nusselt number Nu = (H/∆T )|dθ/dz|w and skin-
friction coefficient C f = 2ν|du/dz|w/U2 are shown in figures 2
and 3, where |dθ/dz|w and |du/dz|w are the absolute wall-
gradients of the temperature and velocity, averaged over time,
xy−plane and both walls. In figure 2 when Ro−1 = 0 (no Corio-
lis force), Nu follows the Grossman & Lohse theory ( ). At
a constant Ra, as Ro−1 increases (i.e. Coriolis force increases),
Nu decreases until it reaches a minimum at the optimal Ro−1

opt.
Increasing Ro−1 beyond Ro−1

opt leads to increase in Nu (except
Ra = 107). This is better shown in figure 3(a,b): at each Ra,
there exists an Ro−1

opt at which Nu is minimum and C f is max-
imum. Considering the sensitivity of Ro−1

opt with respect to Ra
(figure 3), reveals that Ro−1

opt ' 0.8 for all values of Ra. In fig-
ure 2, if we fix Ro−1 at Ro−1

opt (∗), and increase Ra, we observe
that above Ra = 109, the Nu scaling steepens towards Ra0.38,
implying the flow transition towards the ultimate regime.

The mechanism behind the minimum Nu at Ro−1
opt was explained

by Chong et al.[15], through a unifying view on the interplay
between a driving force (e.g. buoyancy), and a stabilising force
(e.g. Coriolis force, salinity or confinement). As the stabilis-
ing force increases, at an intermediate regime it becomes strong
enough that it organises the flow structures in the bulk, yet not
too strong to suppress the turbulent flow motions. Chong et



Figure 2: Nu/Ra1/3 for all cases listed in table 1. Nu =
(H/∆T )|dθ/dz|w, where θ is the averaged θ over (x,y)
plane and time, and |dθ/dz|w =

(
|dθ/dz|z=0 + |dθ/dz|z=H

)
/2.

Ro−1 = 0 (×), Ro−1 = 0.3 ( ), Ro−1 = 0.5 (4 ), Ro−1 = 0.6
(+), Ro−1 = 0.8 (∗) and Ro−1 = 1.0 (◦). Grossmann & Lohse
theory [4] ( ); Nu scaling by Ra0.38 ( ).

Figure 3: Variation of (a) Nu/Ra1/3, (b) C f and (c) Apl cold
plume coverage at the edge of the bottom wall boundary layer,
versus Ro−1 at different Ra. C f = 2ν|du/dz|w/U2, where u
is the averaged u over (x,y) plane and time, and |du/dz|w =
(|du/dz|z=0 + |du/dz|z=H)/2. Ra = 107 ( ), Ra = 108

( ), Ra = 109 ( ), Ra = 1010 ( ). Each symbol
corresponds to one Ro−1 consistent with figure 2.

Figure 4: Instantaneous spanwise averaged velocity vector
(uy,wy), overlaid by the instantaneous spanwise-averaged tem-
perature field (θy) at Ra = 1010, and different Ro−1. (a) Ro−1 =
0.3, (b) Ro−1 = 0.8 and (c) Ro−1 = 1.0. The green line locates
θ

y
= 0.

Figure 5: Profiles of u at (a,b) Ro−1 = 0.3, (c,d) Ro−1 = 0.8 and
(e,f ) Ro−1 = 1.0. The arrows show the directions of increase in
Ra. (a,c,e) u+ = u/uτ versus z+ = zuτ/ν; (b,d,f ) u/U versus
z/H. uτ = (ν|du/dz|z=0)

1/2. Ra = 107 ( ), Ra = 108

( ), Ra = 109 ( ), Ra = 1010 ( ). The lines ( )
in (a,c,e) are: u+ = z+ and u+ = 1/0.41ln(z+)+5.2 [16]. The
right triangle in (b,d) shows the slope (H/U)(du/dz)'−Ro−1.

al.[15] explained the role of stabilising force in forming highly
coherent plume-like structures that preserve their heat against
thermal or molecular diffusion. However, the fundamental dif-
ference between our setup and [15] is in the axis of rotation and
the resulting coherent structures. In [15] axis of rotation was in
the wall-normal direction, and the Coriolis force was acting in
the x− and y−directions. The resulting coherent structures, at
Ro−1

opt, were appearing as circular columns oriented aligned with
the axis of rotation (z), which were maximising the heat trans-
fer (maximum Nu), between the the top and bottom walls. Here,
axis of rotation is in the y−direction, and the Coriolis force is
acting in the x− and z−directions. The result of the increase in
the stabilising force, at Ro−1

opt (figure 4b), is a bidirectional wind
that drives the hot and cold fluid in the positive and negative
x−direction, below and above the domain centreline, respec-
tively. Consequently, the wind inhibits the heat transfer between
the end walls, leading to the minimum Nu. To better quantify
the morphological behaviour of the wind, following [15] in fig-
ure 3(c) we plot the area ratio Apl/(Lx×Ly) covered by the cold
fluid at the edge of the bottom thermal boundary layer ([15],
supplemental material). It is seen that at a certain level of sta-
bilising force (Ro−1

opt) smaller portion of the cold fluid covers the
bottom thermal boundary layer compared to the weaker stabil-
ising forces (Ro−1 < Ro−1

opt). It is also seen that beyond Ro−1
opt

(Ro−1 = 1.0), the stronger stabilising force increases the cold
fluid coverage of the bottom thermal boundary layer, coincident
with the increasing Nu. At Ro−1 = 1.0 the wind is weakened,
and the hot and cold fluids penetrate deeper to the bulk of the
flow (figure 4c).

The wind strength is demonstrated in the mean velocity pro-
files in figure 5. In each figure, Ro−1 is fixed and Ra is in-
creased, and each row shows one Ro. Comparing the profiles
between Ro−1 = 0.3 (figure 5a,b), Ro−1 = 0.8 (figure 5c,d), and
Ro−1 = 1.0 (figure 5e,f ), the maximum wind velocity is attained
at Ro−1

opt = 0.8. At Ro−1
opt = 0.8, as Ra increases, the profiles trend



Figure 6: Near-wall instantaneous u at z+ = zuτ/ν = 15, Ra =

1010 and Ro−1
opt = 0.8. (b) shows the magnified green framed

square in (a) which encloses an area of 500×500 wall units.

towards the Prandtl-von Kármán (logarithmic) behaviour ( ),
however, full collapse on the logarithmic law is still not reached
at Ra = 1010. Considering figure 5(b,d) for Ro−1 ≤ Ro−1

opt, the
mean profiles in the core of the domain (0.3. z/H . 0.7), yield
the slope (H/U)(du/dz)'−Ro−1. This approximation can be
derived by plane and time averaging equations (1) and (2), and
combining them together. At Ro−1 = 1.0 > Ro−1

opt, the wind
is weakened and its direction oscillates. For Ro−1 � 1.0 (not
shown), the bidirectional wind is transformed into a field of 2D
vortices in the xz−plane. At that point the momentum balance
is only between the Coriolis force, buoyancy and pressure gra-
dient. This flow regime, is related to the geostrophic regime in
the planetary flows [14].

The maximum wind speed at Ro−1
opt = 0.8, at sufficiently high

Ra, modifies the near-wall structures to those seen in wall-
bounded flows (figure 5). The instantaneous field of u at
z+ = 15, Ro−1

opt = 0.8 and Ra = 1010 yields the emergence of
the near-wall streaks, another indication of the flow tendency
towards the ultimate regime. The green square, magnified in
figure 5(b), highlights the approximately 100 wall units spacing
between the near-wall streaks.

Conclusions

We performed DNS of centrifugal buoyancy-driven convection
approaching but not reaching the ultimate regime of thermal
convection. To this aim, a cylindrical shell was considered,
with a cold inner wall and a hot outer wall, rotating about its
axis at constant angular velocity. Three non-dimensional num-
bers characterise the flow: Prandtl number Pr, Rayleigh num-
ber Ra, and Rossby number Ro. Pr = 0.7, corresponding to air
was considered. Thus, Ra and Ro were the remaining control
parameters; Ra characterises the buoyancy force, and Ro char-
acterises the Coriolis force (i.e. higher Ro−1, higher Coriolis
force). Similar to Chong et al. [15], the flow is subjected to an
interplay between the driving buoyancy force and the stabilising
Coriolis force. However, at the optimal condition, owing to the
different axis of rotation, rather than the coherent plume-like
structures, seen in [15] that maximised heat transport, a strong
bidirectional wind is formed (at Ro−1

opt ' 0.8) that minimises
heat transport. By increasing Ra, at Ro−1

opt, the mean flow ap-
proaches Prandtl-von Kármán (logarithmic) behaviour, yet full
collapse on the logarithmic law is not reached at Ra = 1010.
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