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Abstract

A salt wedge is set up in a laboratory flume and the resulting
Holmboe instabilities are investigated. Particle image velocime-
try and laser induced fluorescence are used to obtain velocities
and the height of the density interface. The positive and neg-
ative wave modes are separated by the 2D Fourier transform.
Three different instability regions with positive and negative
modes are found at the salt wedge interface. Theoretical re-
sults obtained from the Taylor-Goldstein equation are compared
with the observed instabilities. In the analysis, upper and lower
boundaries are included and the density interface is displaced
vertically with respect to the center of the shear layer. The nega-
tive instabilities are smaller in amplitude than the positive insta-
bilities due to the bottom boundary. The theoretical predictions
agree with the experimental observations.

Introduction

When considering the possibility of turbulence production and
mixing in a sheared density stratified environment, it is impor-
tant to determine whether or not a particular flow configuration
represents a stable solution of the equation of motion. We are
interested in the stability of a statically stable stratified shear
flow whose density interface is much thinner than the shear
layer thickness. Such background flows occur in many physical
situations, for example, salt wedge flows [6] & [8] and exchange
flows [7]. Most previous work is based on the assumption that
the flow is unbounded. However, in many flows [8], the shear
layer thickness is a significant proportion of the total flow depth.
Symmetric Holmboe instabilities have been largely studied for
few decades [4]. While, the asymmetry with a displacement be-
tween the center of shear layer and density interface is much
more likely to occur in nature. In this paper, we will investigate
the effects of finite flow depth with asymmetry.

Here, we study the stability of the inviscid flow and use the
traditional method of linear stability analysis. Although linear
analysis is only valid for a very short time before the nonlinear
effects become important, it does correctly describe the onset
and early evolution of infinitesimal perturbations, and generally
gives a qualitatively correct indication of overall stability of the
flow. In addition, experimental results indicate that linear sta-
bility analysis correctly predicts the wave number of unstable
modes [5].

Linear stability analysis

We examine the stability of a two-dimensional (2D) inviscid
flow with two layers of constant densities and with an interfacial
layer of constant horizontal shear as shown in figure 1. Though
the piecewise profiles are highly idealized, they are sufficient to
capture the essential instability mechanisms that are present in
the more realistic smooth profiles [1] and [5]. Asymmetry and
boundaries are assessed in this stability study. The asymmetry
refers to displacement between the center of the shear layer and
the density interface denoted by d # 0. The effect of the upper
and lower boundaries on the instability is included.

First, we nondimensionalize the problem using the length, ve-
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Figure 1: Definition diagram for the piecewise linear approxi-
mations of the velocity and density profiles

locity and density scales &, Uy, and pg. The background density
and velocity profiles are expressed as
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where { =z/h,e=d/h,p=p/po, and i = U /U, represent non-
dimensional height, density, and velocity, and € is the asymmet-
ric parameter, whose absolute value is assumed to be less than
unity. The upper and lower layer depths are nondimensional-
ized as H, = Hy /h and H; = H /h.

For an inviscid flow with small variations in density, the linear
stability of the flow is governed by the Taylor-Goldstein (T-G)
equation:

{(c+ ikU)z[d—z — K] —K*N? — ide—U(ch ikU)}w=0 (3)
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where k is the wave number; 6 = —ikc is the frequency; w(z)
is the vertically varying amplitude of the velocity perturbation;

and the buoyancy frequency is N = \/(g/p)/(—dp/dz).

From the piecewise linear profiles of density and velocity, us-
ing the techniques outlined in [2], we obtain the following non-
dimensional eigenvalue equation
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All of the variables in the above equation are dimensionless: the
instability wave number is o0 = kA and the Richardson number
is J = 2g'h/AU? (where g’ = gAp/po and AU = 2U,). The
special case, H, = Hj, was examined by Haigh & Lawrence [3].
When H,, and H; — oo, was studied by Lawrence et al. [5]. With
further simplification, H, and H; — o and € = 0, was studied
by Holmboe [4].
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Figure 2: PIV measured velocity profile and its definition sketch
for piecewise linear profiles (x = 160 cm)

Dispersion relation and instability

Figure 2 shows the PIV measured velocity profile and its fitted
piecewise linear profile. The corresponding experimental pa-
rameters are given in table 1. The shear layer thickness is much
thicker than that of the density profile, thus the density distribu-
tion is assumed to be a step function with a negligible influence
on the Holmboe instability [7]. The key parameters in the stabil-
ity analysis are the velocity difference between the layers AU,
the shear layer thickness 2A, the reduced gravity acceleration g’
and the bulk Richardson number J.

In figure 3(a), the growth rate oic; against the non-dimensional
wave number for positive (red solid line) and negative (black
dash line) instabilities is illustrated. The asymmetry € is zero.
For a given Richardson number J = 0.4, the growth rates of

both the positive and negative instabilities vary with the wave
number. The top and bottom boundaries are far from the cen-
ter of the shear layer and negligibly influence instabilities. The
positive and negative instabilities are symmetric in this case. As
the shear layer approaches the lower boundary (figure 3(b)), the
negative instability is inhibited in terms of both the growth rate
and the range of the wave number. This boundary also opens
a small new positive growth rate region with a smaller value
of wave number starting from 0.51. From the dispersion rela-
tion, the Holmboe instability (H) is caused by the interaction of
vorticity wave (v) and internal gravity wave (g) ([1]). The inter-
action of lower (¢, <0) v and g is weaker than that of the upper
(¢ >0) ones, and makes the Holmboe wave region narrower.
As the influence of the bottom boundary increases (figure 3(c)),
the negative instabilities almost disappear. Also, the offset € =
-0.5 starts to play a role in the growth rate. It totally prevents the
positive instabilities, which is referred as the “one-sidedness”.
The offset adding together the lower boundary effect makes it
difficult to observe either instabilities in this region. It should
be noted that the positive instability possibly occurs at a high
wave number (20t > 4), which is usually damped by viscosity
in reality.

0.3

—
o027 / \
,,/ \

\

0.1f

0

0 0.5 1 15 2 2.5 3 35 4
2w
(2) Hy = 4.0, Hy = 8.0

! v
T -
_— H 9
o" 0f
" e
1 R —
0.3 T — T T T T
Negative o Positive
0.2 instabilities /// > instabilities
o RV
3 \
0.1 \
|
0 I .
0 2.5 3 3.5 4
(b)H, = 1.3, H, = 10.7
0.3 T i : T .
—~ 0271
8
T o0y
N
0 f

0 0.5 1 15 2 2.5 3 3.5 4
2w

(©) H =1.1,H, = 10.9

Figure 3: Dispersion relation and exponential growth rate for
the Holmboe flow configuration from (a) both positive and neg-
ative wave region to (b) positive wave dominant region and to
(c) no wave region

Experiments

A salt wedge is set up in a laboratory flume to investigate the
interfacial instabilities. A schematic of the experimental set-up
of salt wedge flows is shown in figure 4(a). The dimensions of
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(a) Schematic of the experimental set-up of salt-wedge flows

(b) Experimental observation of the typical interfacial wave regions (part of snapshot)

Figure 4: Experimental set-up (a) and observations of the typical interfacial wave regions (b)

H L W g h AU J
(cm) (em) (cm) | (ems™) (em) (ems™h) ()
108 240 10 2.4 0.9 33 0.4

Table 1: Experimental parameters

the flume are outlined. The tank was divided into two equally
sized reservoirs and connected by a 10 ¢m wide channel. The
water was well mixed between the reservoirs to ensure uniform
temperature. A gate was placed mid channel to equally divide
the fluid into two equal volumes. The water temperature was
25°C.

Laser-induced fluorescence (LIF) was used to visualize the den-
sity interface along the whole channel by illuminating fluores-
cein dye in the salt water (lower layer) with a continuous solid
state laser (530 nm). A filter was installed in front of the LIF
cameras to allow the separation of the signal with later Particle
image velocimetry (PIV). A sample image is shown in figure
4(b). The interface was identified by locating the maximum
vertical gradient in light intensity. PIV was used to measure the
velocity of pliolite VI-L particles (Goodyear Chemical Co.).

At the start of the experiment the gate was removed and a pump
placed in the salt water reservoir was switched on. The pump
slowly drew water from the salt water reservoir and deposited
it into the base of the fresh water reservoir. This created a flow
with in the connecting channel from the fresh water (left) reser-
voir toward the salt water (right) reservoir. The flow enters a
long period of relatively steady arrested salt-wedge flows, once
the Helmbholtz oscillations dampen out [7]. A total number of
12 experiments have been conducted.

In the first instance, it is beneficial to perform a simple visu-
alization of waves at the density interface in different exper-
iments. This is shown in figure 4(b), where a representative
photograph of the laboratory waves is displayed with a sharp
density interface. These waves are reminiscent of the Holmboe
instability [4], which consists of positive and negative instabil-
ities of equal growth rates and equal but opposite phase speeds
[5]. The velocity shear is increasing from upstream (left) to
downstream (right). In the salt wedge case, the background
velocity profiles often have a displacement between the cen-
ter of the shear layer and the density interface in the no wave
region. On the L.H.S. of the salt wedge, a bottom boundary

layer flow with a thickness of around 3 cm is present. In the no
wave region, this boundary layer results in a strongly asymmet-
ric flow. Momentum diffusion as the fresh water flows to the
right changes from this asymmetric flow to a symmetric flow in
the positive wave region. As illustrated by the theory, € = —0.5
(figure 3(c)), the positive wave dies down totally. Rightward of
no wave region, the positive waves with upward cusps were ob-
served; while the negative waves, which cusp toward the lower
layer, can be found near the exit region. The positive and neg-
ative waves appear in different location, called “one-sidedness”
phenomenon. The positive wave region is caused by the inhibi-
tion of the negative waves by the lower boundary (figure 3(b)).

Many of the basic features in the wave field are revealed by an
x —t characteristics diagram of the deviation of density inter-
face elevation from its temporal mean as shown in figure 5(a).
The characteristics represent a compilation of interface devia-
tion observed in thousands of images. The dispersion relation
in figure 5(b) is obtained by a 2D Frourier transform to express
the interfacial elevation in the wave number-frequency plane. In
the reference of the mean flow, the interface consists of contri-
butions from both upper and lower Holmboe wave modes trav-
elling in opposite directions. Due to the strong mean flow, both
positive and negative modes travels downstream and the cor-
responding energy is located in the second & fourth quadrants.
The positive and negative modes are separated by the mean flow
(dash black line) before performing the inverse transform. The
positive waves and negative waves are illustrated in figure 5(c)
and (d), respectively. The speeds of the positive and negative
wave are increasing due to the acceleration of the mean flow to
the downstream.

Conclusions

This investigation aims to understand the generation of Holm-
boe instabilities in arrested salt-wedge flows. The analytical
solutions of the Taylor-Goldstein equation with asymmetry and
boundaries are obtained. The effects of asymmetry and upper
and lower boundaries on stabilities are examined. The predicted
results are compared with the experiments. Holmboe waves
were observed. The 2D Fourier transform was used to sepa-
rate the waves into positive and negative modes. Due to the
lower boundary, the negative instabilities are smaller in ampli-
tude than the positive instabilities. The the disappearance of
positive instabilities are caused by the asymmetry (€). With €,
the strength of positive instability is weaker.
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Figure 5: (a) Characteristics (x —¢) during the period of steady salt wedge. The shading indicates the deviation of the interface elevation
from the mean. Pure white (black) indicates a positive (negative) deviation. (b) The dispersion relationship is obtained through 2D
Fourier transform from characteristics. (c) The positive waves and (d) negative waves are obtained through 2D inverse Fourier transform
from dispersion relation based on the black dash line in (b)
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