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Abstract

Linear stability analysis (LSA) of a self-similar adverse pres-
sure gradient (APG) turbulent boundary layer (TBL) is ex-
plored in order to identify coherent structures. An eddy viscos-
ity model (EV) is implemented via the Boussinesq hypothesis
[8] to model the nonlinear coherent-turbulent interactions. Di-
rect numerical simulations (DNS) by Kitsios et al. [3, 6] are
used for the database of this study. A weak APG and strong
APG (on the verge of separation) are studied with dimension-
less streamwise pressure gradients (β) of 1 and 39 respectively.
Their Reynolds numbers based on the momentum thickness (δ2)
within their respective regions of interest are 3,100− 3,400
and 10,000− 12,300. For the strong APG, the most unstable
eigen-solution produces a wave resembling a Kelvin-Helmholtz
(KH) instability located near the displacement thickness (δ1)
height. This position coincides with the inflection point (IP) in
the mean flow profile. The IP satisfies Rayleigh’s and Fjortoft’s
criterion for the existence of an inviscid instability [9]. Posi-
tive growth rate is seen for non-dimensional angular frequen-
cies of 0.08 ≤ ω̂ ≤ 0.51, with the maximum growth occurring
at ω̂ = 0.26. The weak APG also contains a KH like wave,
however for all ω̂, the growth rates are negative. Spanwise
wavenumber ˆkxr and phase velocity ĉr increase monotonically
for both β cases. Comparisons with a quasi-laminar analysis are
also made.

Introduction

For many engineering flows, their performance is based directly
on the flow’s capacity to remain attached in the presence of an
adverse pressure gradient (APG). These pressure gradients typi-
cally arise from complex convex curvatures. The ability to fully
understand the effects of the pressure gradient is difficult due to
the continuous change in the pressure gradient in the streamwise
direction [5]. To overcome the upstream historical effects on the
flow structure due to changes in pressure gradient, a canonical
flow is required. Self-similarity allows the study of the dimen-
sionless streamwise pressure gradient parameter:

β =
δ1(

dP
dx )

τw
(1)

with δ1,
dP
dx

and τw respectively representing the displacement
thickness, streamwise pressure gradient and wall shear stress.
Whilst a constant β is desired, it is not a sufficient condition
for there to be self-similarity. If the flow is self-similar, a self-
similar function in terms of the non-dimensional wall-normal
position η, where η = y/δ1 can be written for the velocity and
Reynolds stresses. Full details of the requirements for a self-
similar boundary layer are found in the works of George &
Castillo [2], Castillo & George [1] and Kitsios et al. [3, 6]. Di-
rect numerical simulations (DNS) by Kitsios et al. [3, 6] provide
a database for a weak APG and strong self-similar APG with

β = 1 and 39 respectively which are compared to investigate the
influence of β on flow instabilities. The β= 39 represents a case
where the flow is on the verge of separation. Their Reynolds
numbers based on the momentum thickness (δ2) within their
regions of interest are 3,100−3,400 and 10,000−12,300. Ve-
locities are scaled by the external velocity Ue.

Boundary layer characteristics and turbulent statistics

The mean profile of a flow provides information which is
of great interest in linear stability analysis (LSA). The mean
streamwise velocity profiles are shown in Figure 1 with the in-
flection points also marked. It is noted that the velocity pro-
files are similar for y/δ1 < 0.02 with the strong APG presenting
lower velocities close to the wall compared to the weak APG up
until δ1. The second order statistics are presented in Figure 2
for β = 1 and β = 39 respectively. Comparisons to the modelled
Reynolds stresses are discussed in the following section. Whilst
the inner peak is still present, it is clear that the influence of the
pressure gradient is to flatten this peak and to create a domi-
nant outer peak at δ1. As β→ ∞, τw → 0 and the outer peak
increases in magnitude, becoming the dominant location in the
boundary layer. This outer peak corresponds to the peak in tur-
bulent production term in the kinetic energy budget equations.
Due to the high β flow being reminiscent of a free shear layer
at high β, an instability may exist at this location in the stream-
wise velocity profile. Simple criteria for the identification of an
unstable flow exist in the form of Rayleigh’s and Fjortoft’s cri-
teria. The Rayleigh inflection point theorem states that the flow
is unstable if U(y) has an inflection point (IP). However a more
restrictive requirement comes from Fjortoft’s criterion requiring
that

∂2U
∂y2 · (U−UIP)< 0 (2)

below and above the considered inflection point, with UIP be-
ing the velocity at the inflection point [9]. For β = 1, the second
derivatives reveal a single IP denoted as I and a saddle point
at ∼ 1 < y/δ1 <∼ 2 . This IP satisfies both Rayleigh’s and
Fjortoft’s criterion. The β = 39 case presents three IP. IP I sat-
isfies both criteria with its location the same as in the β = 1
case, with II failing Fjortoft’s criterion and III like I passing
both criteria. The location of I however is too close to the wall,
is dominated by viscous effects, and unable to sustain an in-
stability. However III is located far enough from the wall to
be removed from these effects and is a likely candidate for the
existence of a Kelvin-Helmholtz (KH) instability.

Linear stability analysis methodolgy

The MAtrix Forming Instability Analysis (MAFIA) developed
by Parades [7] is used to conduct the linear stability analysis
(LSA). The LSA for turbulent flows is based on the Navier-
Stokes equation of the coherent fluctuation velocity, linearised
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Figure 1: Wall-normal profile of the streamwise velocity pro-
files in the self-similar region of the DNS.
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(a) Model fit for β = 1
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(b) DNS results for β = 1
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(c) Model fit for β = 39
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(d) DNS results for β = 39

Figure 2: Reynolds stresses against wall-normal position.

around the mean flow state. A normal mode ansatz

q(x,y,z, t) = q̂(y) · ei(kxx+kzz−ωt) (3)

is substituted for the coherent part of the triple-decomposed ve-
locity

q(x,y,z, t) = q(x,y,z)+ q̃(x,y,z, t)+q
′′
(x,y,z, t). (4)

In these equations q represents the mean part of the velocity
and pressure, with q′ being the turbulent fluctuation, comprised
of q̃ and q′′ the coherent and turbulent-stochastic components
respectively. To conduct the LSA, two of (kx,kz,ω) are spec-
ified, with these terms representing the streamwise wavenum-
ber, spanwise wavenumber and temporal frequency respectively
and their dimensionless counterparts given by k̂x, k̂z, ω̂. Solv-
ing the eigenvalue problem leads to the third variable as well
as the amplitude (eigenfunction) q̂ of the solution. To solve
this ansatz, a turbulence model is necessary for closure of the
unknown Reynolds stresses. As shown in Reynolds and Hus-
sain [8] and in Kitsios et al. [4, 5], the linearised Navier-Stokes
equations for the coherent perturbation velocity contain addi-
tional terms resulting from the phase-averaged non-linear inter-
actions between mean, coherent and stochastic field. However
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Figure 3: Modelled eddy viscosity νt as a function of wall-
normal position.
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Figure 4: (a,b) Dispersion relationship of α̂r against ω̂r. (c,d)
Dispersion relationship of ĉr against ω̂r.

two simplifications can be made: the non-linear interaction be-
tween the coherent fluctuations is negligible (˜̃uũ ≈ 0) and the
coherent Reynolds stress is small compared to the stochastic
part (ũũ ≈ 0). The remaining term which must be modelled is
the coherent-stochastic interaction ũ′′u′′. This can be modelled
appropriately as

ũ′′u′′ =−2νtS̃ (5)

where S̃ is the coherent shear rate tensor and νt is the eddy
viscosity (EV). The argument can be made that no changes in
eddy viscosity and turbulent kinetic energy contribution is made
from the coherent perturbation, with these terms defined as ν̃t =
0 and k̃ = 0 respectively. The modelling of νt is found from a
least square fit over all stochastic Reynolds stresses given by

νt =−
u′′u′′:S

2S:S
(6)

with u′′u′′ representing the stochastic Reynolds stress tensor, S
the mean strain rate tensor and the operation : being the Frobe-
nius product. The least square fit for νt contains all nine compo-
nents of u′′u′′ and S. To simplify these terms, it can be assumed
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Figure 5: Dispersion relationship of ˆ−αi against ω̂r. Neutral growth is indicated with the line ˆ−αi = 0.
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(a) β = 39 quasi-laminar
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(b) β = 39 with the closure model

Figure 6: Modulus of the streamwise eigenfunctions.

all spanwise gradients are zero i.e. ∂u
∂z = ∂v

∂z = ∂w
∂z = 0. Addi-

tionally, there is no mean spanwise velocity. Furthermore, the
stochastic shear stresses in the x —z and y —z direction are zero
due to homogeneity, i.e. u′′w′′ = v′′w′′ = 0. Since the stochastic
Reynolds stresses u′′u′′ are not known a priori, they will be ap-
proximated by the turbulent Reynolds stresses, i.e. u′′u′′ ≈ u′u′.
It is found that without this closure, the quasi-laminar model
does not produce the correct results.

The flexibility of MAFIA allows for a variety of both discretisa-
tion schemes and solving algorithms. The discretisation of the
field is implemented with 400 Chebyshev collocated grid points
(mesh independence above this many grid points) with piece-
wise polynomials of degree 16 as a finite difference scheme im-
plementation. The solution is found via an Arnoldi iteration
scheme. The mean profile is extended such that at the far field
boundary conditions are y/δ1 = 500, U/Ue ≈ 1. On the wall,
homogeneous Dirichlet conditions are set for the coherent ve-
locity fluctuations and a homogeneous Neumann condition for
the coherent pressure fluctuation. In the far field homogeneous
Dirichlet conditions are imposed for all fluctuations.

The influence of the turbulence model to account for the

coherent-turbulent stresses will be now compared. The
Reynolds stress term is dominated by u′v′, with the results with-
out the normal stresses found to not change significantly. The
results of νt as a function of wall normal distance are presented
in Figure 3 and show that the peaks of additional viscosity are
present around δ1. The influence of u′v′ being the dominant
term is consistent with the findings of Kitsios et al. [4] for flows
with spanwise homogeneous statistics. Reynolds stresses mod-
elled with νt and the mean kinetic energy k, via the Boussinesq
hypothesis [8] show that the highly anisotropic stresses in the
simulation become more isotropic resulting in u′2 too low and
v′2 too high as shown in Figure 2. Of interest is the peak stress
located near the mean velocity inflection point. Figure 2a shows
that for the weak APG, the stresses are also anisotropic but the
shapes are not similar. There is a mismatch in shape and value
of u′2 with the inner peak less dominant and similar in size to
the outer peak.

Results and discussion

Performing a spatial stability analysis, with k̂zr = 0, reveals lit-
tle change in ˆkxr against ω̂r with increasing monotonic growth
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Figure 7: A sample of the vortices and roll-up phenomena
generated in the KH instability for the most amplified mode
(ω̂ = 0.51, ˆkxr = 0.86) and β = 39. The KH instability is shown
for one axial wavelength in streamwise direction. The arrows
indicate the coherent fluctuation component only.

as evident in Figure 4a and 4b for both β cases with the effect of
the additional viscosity being negligible. The changes in phase
velocity (ĉr) are shown in Figure 4c and 4d with increasing
monotonic growth also present and again minimal difference
between having the closure model present or not. When the
closure model is not present, ĉr displays a decrease in slope at
higher frequencies. Growth rates (−αi) are presented in Figure
5 with the neutral growth line also included. Unstable growth
for the strong APG is found for 0.08 ≤ ω̂ ≤ 0.51 with a peak
at ω̂ = 0.26. For the weak APG all frequencies are stable
in the dispersion relation. Therefore, a KH instability occurs
only for the strong APG, while it is absent for the weak APG
case. The streamwise growth rate, −αi, against frequency, re-
veals the response after the peak frequency to be double for the
strong APG compared to the weak APG case. Without the clo-
sure model, the region for unstable growth increases for β = 39
and peak growth occurs at ω̂ = 0.33. For β = 1 without the clo-
sure, a secondary peak is introduced, originating from ω̂ = 0.3
and maxima at ω̂= 0.4. For ω̂< 0.2, the growth rates compared
to the EV model case are reduced for β = 1, thus demonstrating
the significance of the EV closure model.

The effect of increasing β is also evident in that it causes a tran-
sition from a stable KH wave to an unstable one at some stage.
The magnitudes of the unstable streamwise eigenfunctions as a
function of wall-normal coordinate and frequency can be seen
in Figure 6. By examining the changes in these figures, it is
evident that the role of the closure model removes a secondary
peak around δ1 for some intermediate ω̂.

An example of the KH wave can be seen in Figure 7 for the
most amplified frequency of ω̂ = 0.51 in the strong APG case
of β = 39. Here, the streamwise and wall-normal eigenfunc-
tion, representing the coherent fluctuation, are shown as ve-
locity vectors. The eigenfunctions are periodically continued
in streamwise direction with the corresponding wavenumber
of ˆkxr = 0.86. Examining Figure 7 it is clear that the KH
wave displays the typical roll-up phenomena which takes sev-
eral δ1 to take effect in the streamwise direction. The loca-
tion of the instability occurs at around δ1, in line with the peak
Reynolds stresses, inflection point satisfying Fjortoft’s criterion
and matching the maximum modulus of the streamwise eigen-
functions. The wall-normal eigenfunctions for all cases dis-
cussed (not shown) display a peak at y/δ1 ≈ 2 before decaying
farther away from the wall.

Conclusion

Linear stability analysis is performed on a weak and strong APG
TBL with β = 1 and β = 39 provided by Kitsios et al. [3, 6].
Using the MAFIA solver of Paredes [7] and undertaking a spa-
tial analysis, it is found that the flow is stable for all ω̂ for β = 1
whilst for β = 39 it is unstable for 0.08 ≤ ω̂ ≤ 0.51. The in-
stability mode present takes the form of a KH wave and is only
present for the strong APG case near δ1.
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