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Abstract

The principle benefit of using the discontinuous Galerkin (DG)
methods is that they can produce a high order accurate scheme
which can achieve an equivalent error compared to the lower
order scheme with orders of magnitude lower computational
effort. Furthermore, DG methods have a built-in stabilisa-
tion mechanism when solving problems with complex geom-
etry which make it highly suitable to be implemented in fluid-
structure interactions problems. This paper presents a frame-
work for the computation of fluid thermal structure interaction
problems within a single domain using DG methods on unstruc-
tured grids. The full solver consists of four main components:
an incompressible fluid solver, a conjugate heat transfer (CHT)
solver, a linear elastic solver and a fluid to structure interaction
(FSI) coupling. Based on an existing DG solver for the incom-
pressible Navier-Stokes (INS) equation, the fluid advection-
diffusion equation, the Boussinesq term, the solid heat equa-
tion and the linear elastic equation are introduced using an ex-
plicit DG formulation. A Dirichlet-Neumann partitioning strat-
egy has been implemented to achieve the data exchange pro-
cess via the numerical flux of interface quadrature points in the
fluid-solid interface. Formal h and p convergence studies em-
ploying the method of manufactured solutions (MMS) demon-
strate that the expected order of accuracy is achieved. The al-
gorithm is then further validated against the lid-driven cavity
with a flexible bottom wall. The DG results show good agree-
ment with the benchmark data and the h and p convergence tests
demonstrate clearly that very high-order methods use substan-
tially lower computational time for equivalent error norms when
compared to second order approaches.

Introduction

In fluid to structure interaction (FSI) problems, solid structure
interacts with internal or external fluid flow. The numerical pro-
cedures to solve the FSI problems can be broadly classified into
two approaches:(i) monolithic approach and (ii) partitioned ap-
proach. The monolithic approach treats the fluid and structure
dynamics in the same mathematical frameworks to form a single
system equation for the entire problem, which is solved simul-
taneously by a unified algorithm. This approach can potentially
achieve better accuracy for a multidisciplinary problem, but it
may require more resources and expertise to develop and main-
tain such a specialised code. On the other side, the partitioned
approach treats the fluid and the structure as two computational
fields which can be solved separately with their respective mesh
discretisation and numerical algorithm. The information be-
tween the fluid and solid are exchanged as interfacial conditions
on the interaction face. The partitioned approach can take ad-
vantage of existing codes for solving many complex fluid and
structure problems.

Discontinuous Galerkin (DG) methods belong to the class of fi-
nite elements. The finite element function space corresponding
to DG methods consists of piecewise polynomials which can be
completely discontinuous across element interfaces. The first
DG method was introduced by Reed and Hill [5] to solve the

steady-state neutron transport equation. The DG method has
many beneficial features, such as the potential for high-order
scalability and stability for complicated geometries. These key
features help to make FSI modellng more accurate, and robust
compared to the traditional finite element method. However,
before these positive gains can be realized, a formulation for a
loose-coupled FSI problem must be demonstrated using the DG
method.

The early research of using the DG approach to solve FSI prob-
lems date back to 2009. Nguyen developed a numerical method
for simulations of flow over variable geometries including de-
formable domains or moving boundaries by a high-order DG
method in the framework of an Arbitrary Lagrangian Eulerian
(ALE) approach to take into account the deformable domains
[2]. Froehle and Persson [3] extended the FSI problem to the
compressible flow where different methods were implemented
in the fluid and the solid domain. The fluid is discretised using
a DG method on unstructured tetrahedral meshes, and the struc-
ture uses a high-order volumetric continuous Galerkin finite el-
ement method. Recently Sheldon and Mille presented the ap-
plication of the hybrid discontinuous Galerkin (HDG) method
to the multi-physics simulation of coupled FSI problems [4].
The elasticity formulations are written in a Lagrangian refer-
ence frame, with the nonlinear formulation restricted to hyper-
elastic materials.

The primary motivation of this paper is to present accurate,
high-order viscous computations of fluid-thermal-structural in-
teraction between the solid domains with a steady-state incom-
pressible flow. The governing equations are the incompress-
ible Navier-Stokes equations, complemented by an additional
advection-diffusion equation that is used to determine the fluid
temperature, the Boussinesq term to calculate the impact of
gravity, the solid heat equation to determine the temperature in
the solid domain and an additional solid linear elastic equation
to determine the solid displacement. All the modelling equa-
tions are solved using the DG methods as the basic equations.
The manufactured solution approach and one benchmarks case
are presented to validate the implementation of all key govern-
ing equations. All the numerical results have shown good con-
vergence in both p and h refinement.

Governing Equation and Numerical Methods

The Boussinesq approximation is included to couple the tem-
perature and flow field for the fluid domain. The govern-
ing equations for steady-state two-dimensional flow on a gen-
eralised coordinate system using the Incompressible Navier-
Stokes (INS) equations and advection-diffusion equation can be
written with the following dimensionless variables:

∇ ·U f = 0, (1)

U f ·∇U f = −∇P +Pr ·∇2U f +
gβL3

α f 2 (Tf −Tq), (2)

U f ·∇T f = α f ∇
2Tf . (3)
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Here subscript f and s is for the fluid and solid phases respec-
tively. X and Y are dimensionless coordinates varying along
horizontal and vertical directions respectively; U f are dimen-
sionless velocity components in the X and Y directions; u f and
v f are velocity components in X and Y direction respectively;
Tf is the fluid temperature, ν is the kinematic viscosity; ρ f and
ρs are the density of solid and fluid phases respectively; ks and
k f are thermal conductivity of solid and fluid medium respec-
tively; (Cp)s and (Cp) f are heat capacity of solid and fluid
medium respectively; αs and α f are thermal diffusivity in solid
and fluid phases respectively; Tq is the quiescent temperature;
P is the dimensionless pressure and p is the pressure; L is the
characteristic length; Pr is the Prandtl number respectively.

The governing equation for the steady-state two-dimension heat
equation in the solid domain is:

q
(ρCp)s

= αs∇
2Ts. (6)

where q is the heat generated per unit volume, αs is the thermal
diffusivity in the solid domain.

The governing equation for displacement within a solid domain
for a steady-state two-dimension linear elastic problem is ex-
pressed in Navier Form as:

λ+µ
ρs

∇∇ ·Us +
µ
ρs

∇
2Us−

F
ρs
− αtsβ∇Ts

ρs
= 0. (7)

Where:
µ =

E
2(1+υ)

;Us = {us;vs} . (8)

us and vs are the displacement components in the X and Y di-
rections; E and υ are the Young’s module and Poisson ratio of
the solid material respectively. αts is the thermal expansion co-
efficient of the material. F is the external body force. For the
plain stress problem, λ and β are defined as:

λ =
Eυ

(1+υ)(1−υ)
,β = 2µ

3λ+2µ
λ+2µ

(9)

For plain strain problems, λ and β are defined as:

λ =
Eυ

(1+υ)(1−2υ)
,β = 2µ+3λ (10)

The DG discretization of the INS equation is strictly follow-
ing Hesthaven’s INS-DG solver [8]. The details of the DG dis-
cretization for the advection-diffusion equation,solid heat equa-
tion and linear elastic equation were presented in the former
work([7] and [6]).

To conjugate the solid displacement and fluid pressure be-
tween the fluid and the solid domain, a loose-coupled Dirichlet-
Neumann partitioning approach is applied to solve steady-state
fluid to solid interaction problems. The fundamental conditions
applied to the fluid to structure interfaces are the displacement
compatibility and the traction equilibrium Eq. (11).

d f = ds;n · τs = n · τ f . (11)

The displacement of the solid domain is calculated by the lin-
ear elastic equation first. The fluid nodal positions on the fluid-
structure interfaces are then determined by Eq. (11) and applied
as the Dirichlet boundary condition. The displacements of the
other fluid nodes are derived through the linear elastic equa-
tion within the full fluid domain. Due to mesh deformation in
both the fluid and the solid domain, the grid matrix and system
matrix need to be updated in each calculation step. The govern-
ing equations of fluid flow in their ALE formulations are then
solved as shown in Eq. (12), following the heat equation in the
solid domain. Ug here is the moving coordinate velocity, and
(U f −Ug) is the relative velocity of the fluid with respect to the
moving coordinate velocity.

∇ ·U f = 0,

(U f −Ug) ·∇U f = −∇P +Pr ·∇2U f ++
gβL3

α f 2 (Tf −Tq),

U f ·∇T f = α f ∇
2Tf . (12)

In steady-state analyses, the mesh velocities are always set to
zero even the fluid nodal displacements are updated. Accord-
ingly, the fluid speeds on the fluid-structure interfaces are zero.
According to the traction equilibrium conditions, the fluid trac-
tion is integrated into fluid force along fluid-structure interfaces
and exerted onto the structure node as the equation shown be-
low:

Ff (t) =
∫

hd
τ f ·dS. (13)

where Ff is the fluid force, hd is the virtual quantity of the solid
displacement and S is the surface area near the fluid-solid inter-
action.

Manufactured Solution Approach and Benchmarks

Manufactured Solution Approach

The manufactured solution to validate the fluid-thermal-
structural interaction solver is prescribed as follows;

In the Fluid domain:

u f = cos(x)sin(y)+ sin(x)cos(y),
v f = −sin(x)cos(y)− cos(x)sin(y),
p = 2ν(sin(x)sin(y)− cos(x)cos(y))−6cos(x)sin(y),

Tf = sin(πx)cos(πy)+0.25cos(πy). (14)

In the Solid domain:

Ts =
k f
ks

sin(πx)cos(πy)+0.25cos(πy),

us = 0.05sin(x)cos(y),
vs = 0.05cos(x)sin(y).

(15)

Where u f and v f is the velocity in X and Y direction, p is the
pressure in the fluid domain, Tf and Ts is the temperature in fluid
domain and solid domain respectively, us and vs is the solid dis-
placement in horizontal and vertical displacement. The fluid
properties are set as: Pr = 0.5,α f = 1.0,Ra = 2.0 while in the
solid domain αs = 1.0,E = 1.0,υ = 0.3. Please note that the
solid to fluid interaction surface will deform due to the solid
domain deformation. Consequently, the fluid and solid thermal



Figure 1: Domain for the manufactured solution to verify the
FSI solver
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Figure 2: h-refinement meshes used for the MMS for FSI solver

diffusivity have to be forced to be same to ensure the temper-
ature continuity on the FSI interaction interface. The Fluid is
within a [X = 0,1;Y = 0,1] domain while the solid is domain
is within [X = 1,2.5;Y = 0,1] as shown in Figure 1. Due to
the natural of the MMS approach, the thermal stress in the solid
domain is offset by the source term and the displacement field
will convergence to the displacement field as shown in Eqt.15.

To calculate the fluid mesh deformation, the linear elastic equa-
tion is applied in the full fluid domain. The fluid elastic mod-
ule and Poisson ratio are set as: E f = 10.0,υ = 0.1. Stress-free
boundary conditions are applied as the Neumann boundary con-
dition on the top and bottom wall of the fluid domain. The fluid
mesh displacement is forced to be 0 for the edge at x = 0; while
at each time step, the displacement calculated from the solid do-
main is applied as the Dirichlet boundary condition to the fluid
to structure interaction edge. Three sets of meshes are used to
validate the convergence speed which start from 2×2 (h = 0.5)
to 8× 8 (h = 0.125). The polynomial order goes up to the 3rd

order. The detailed mesh before and after deformation used in
hp study are shown in Figure 2 and Figure 3 respectively.

The normalized L1 error as a function of hp refinement for hor-
izontal velocity, vertical velocity, fluid temperature and solid
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Figure 3: p-refinement meshes used for the MMS for FSI solver
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Figure 4: Normalized L1 error versus calculation time for the
FSI solver (note: log axes)(a)u f (b)v f (c)Tf (d)Ts

(C)

(a) (b)

Figure 5: Contour plots of the solution to the MMS solution of
the FSI solver-(8×8mesh, p = 3)(a)u f (b)v f (c)Tf and Ts

temperature are plotted from Figure 4, where log-log axes are
employed. These figures demonstrate clearly that the higher
order accurate schemes can achieve an equivalent error to the
lower order schemes with orders of magnitude lower computa-
tional effort. The contour plots of us,vs,Tf and Ts are shown in
Figure 5.

Benchmark-Lid-Driven Cavity with a Flexible Bottom Wall

The second test case was to validate the DG code for fluid-
structure interaction problems. A two-dimensional square cav-
ity with the physical dimensions is shown in Figure 6. The cav-
ity is within a 1× 1 domain while a h = 0.002 thick flexible
bottom wall is attached to the bottom of the cavity. The work-
ing fluid is assumed to be an incompressible Newtonian fluid
with a Prandtl number of 0.71. The top lid is assumed to move
from left to right at a constant speed U = 1 at maintained higher
temperature Th = 1. Two vertical walls are assumed to be in-
sulated while the bottom wall is fixed at the lower temperature
Tc = 0. The Reynolds number is set to be 100, and the Grashof
number equal to 100. Conduction through the flexible wall is
assumed to be negligible. The left and right wall of the solid
domain is fixed. The physical properties of the flexible bottom
wall are assumed to be constant and homogeneous. The de-
fault values chosen for the flexible wall were as follows: density
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Figure 6: Configuration of the lid-driven cavity with a flexible
bottom wall [9](a)u f (b)Tf

Figure 7: Convergence of the average Nusselt number at the top
wall between various studies for the cavity with the flexible wall

ρs = 500kg/m3, elastic Module E = 25000N/m2 and Poisson’s
ratio υ = 0.45.

To simulate the lid-driven cavity with the flexible bottom wall,
uniform meshes with 8× 8 to 16× 16 nodes are used for the
fluid domain while the solid domain is modelled using iso-
parametric beam elements. The polynomial order goes up to the
4th order. The convergences of the average Nusselt number on
the flexible wall against the posted benchmark are presented in
Figure. 7. The contour plot of the streamline and Ts are shown
in Figure. 8.

Conclusions

This paper presents the framework of a discontinuous Galerkin
approach for steady fluid-thermal-structural interaction on un-
structured meshes. The investigation is motivated by the
need for accurate simulation of such problems in mechanical,
aerospace and biomedical engineering applications. A loosely
coupled Dirichlet-Neumann partitioning approach is proposed
to couple the fluid-solid and solid-solid interfaces based on the
numerical flux of quadrature points.

A single case has been proposed based on the method of man-
ufactured solutions to validate and verify all key terms and the
coupling method in all governing equations. The observed order
of spatial accuracy approaches the corresponding polynomial
order when the grid is defined as expected. Further benchmark
cases were presented to validate the accuracy of the DG solver

(a) (b)

Figure 8: Contour plot for the lid-driven cavity with a flexible
bottom wall (8×8 mesh, p = 4)(a)the streamline(b)Tf

against previously published computations. Promising conver-
gence has been demonstrated for both h and p refinement.

This DG solver has the potential to be expanded to solve
engineering-focused FSI problems. Further research will focus
on developing this methodology to full laser package thermal
expansion modelling and chip bending on the printed circuit
board.
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