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Abstract

Adverse pressure gradient (APG) turbulent boundary layers
(TBLs) are found when the flow takes place over the diverg-
ing part of curved surfaces, like flow over the leeward side of
an aerofoil section. This paper reports on a study of the various
factors contributing to the skin friction coefficient in such flows.
Specifically, it deals with the contributions to the wall shear
stress from Reynolds stress, viscous effects and pressure gra-
dient in an incompressible turbulent boundary layer flow. The
skin friction coefficient is expressed in terms of the decomposi-
tion suggested by Renard & Deck [6] for boundary layer flows.

Numerical details

Direct numerical simulations (DNS) are performed to solve the
incompressible Navier-Stokes equation for the primitive vari-
ables of pressure and velocity in Cartesian coordinates. The
computational domain is a rectangular box with a no slip bound-
ary condition at the lower wall. The APG is generated in the
domain by specifying the wall normal velocity in the far-field
(upper wall) where the spanwise vorticity is zero. The inflow
boundary condition is obtained by recycling and mapping a
cross-plane from a downstream position [3, 4]. Periodic bound-
ary conditions are applied in the spanwise direction while the
outflow is a convective boundary condition [4]. The density (set
to one) and kinematic viscosity are taken as constants. The ref-
erence velocity (Ue), displacement thickness (δ1) and the mo-
mentum thickness (δ2) are defined as follows [8, 4].

Ue(x) =UΩ(x,yΩ) (1)

UΩ(x,y) =−
∫ y

0
〈Ωz〉(x, ỹ) dỹ (2)

δ1(x) =
−1
Ue

∫ yΩ

0
y〈Ωz〉(x,y)dy (3)

δ2(x) =
−2
U2

e

∫ yΩ

0
yUΩ〈Ωz〉(x,y)dy−δ1(x) (4)

where 〈Ωz〉 is the mean spanwise vorticity and yΩ is the wall
normal position at which the mean spanwise vorticity is 0.2%
of the mean vorticity at the wall.

The non-dimensional pressure gradient (β) is defined as

β = δ1
Pe,x

τw
(5)

for a unit density, where δ1 is the displacement thickness, Pe,x
is the far-field pressure gradient and τw is the mean wall shear
stress. In the domain of interest (DoI), β = 39 and the flow is
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Figure 1: Reδ1 for each case of β and their respective DoI is
highlighted with the markers. x? is the streamwise position
where Reδ1 = 4800.

self-similar [4]. Within the DoI, the Reynolds number based
on displacement thickness (Reδ1) varies from 22,200 to 28,800.
When β= 39, the flow can be characterized as being at the verge
of separation.

The analysis of the factors contributing to C f is studied in
boundary layer flows with three different pressure gradients in
their respective DoI: β=0 (ZPG), β=1 (mild APG) and β=39
(strong APG). The number of grid points in the streamwise di-
rection for each case in their respective DoI is given as follows:
ZPG - 1035, mild APG - 582 and strong APG - 1001. Reδ1 for
all cases of β are shown in Figure 1 and the DoI for each case
is highlighted with the markers. x? is the streamwise position at
which Reδ1 = 4800. δ1(x?) is the displacement thickness at x?
[4].

The code uses hybrid OpenMP (Open Multi-Processing) and
MPI (Message Passing Interface) parallelisation technique to
decompose the domain. More detail of the code can be found in
[7, 1]. The details of the far-field APG boundary condition and
the numerical details of the simulations are described in [4].



Decomposition of skin friction coefficient (C f )

Energy dissipation occurs whenever there is a relative motion
between a fluid and an immersed object or when a fluid is trans-
ported in pipes. The major part of this energy dissipation is due
to the presence of frictional drag in the TBL. It is important
to undertstand the factors contributing to the friction drag and
C f . Renard & Deck introduced a theoretical decomposition for
mean skin friction generation in a zero pressure gradient (ZPG)
boundary layer flow. They presented the skin friction generated
in both laminar and turbulent flows. The formulation (hereafter
referred as Renard’s formulation) is based on mean kinetic en-
ergy budget in the streamwise direction and is given as follows
[6].

C f =C f a +C f b +C f c (6)

C f a =
2

U3
e

∫
∞

0
ν

(
∂〈u〉
∂y

)2
dy (7)

C f b =
2

U3
e

∫
∞

0
−〈u′v′〉∂〈u〉

∂y
dy (8)

C f c =
2

U3
e

∫
∞

0
(〈u〉−Ue)

∂

∂y

(
τ

ρ

)
dy (9)

where τ/ρ = ν(∂〈u〉/∂y)−〈u′v′〉.

The analysis is performed from an absolute reference frame
which travels with the undisturbed fluid and so the undisturbed
fluid will appear to be stationary. Only the streamwise veloc-
ity is considered as zero in Renard’s formulation while there
are no restrictions on the velocity in wall normal and spanwise
directions. As the absolute reference frame moves at a con-
stant speed, it is an inertial reference frame and so the pres-
sure coincides in both the wall and absolute reference frames.
Renard’s formulation decomposes the generation of mean skin
friction coefficient into a physical phenomenon at every local
streamwise position and corresponding wall normal positions
for a spatially developing flow. When seen from the absolute
reference frame, C f is represented as the mean power supplied
to the fluid by the wall. C f a refers to the viscous dissipation.
C f c can be interpreted as the mean streamwise kinetic energy
gained by the fluid. In the absolute reference frame, Renard &
Deck referred C f b as the dissipation because of production of
turbulent kinetic energy [6]. Renard’s formulation considers the
contribution from the whole boundary layer profile. When seen
from the absolute reference frame, the moving wall develops a
non-zero power. In Renard’s formulation, the Reynolds stress is
weighted by the wall normal derivative of the mean streamwise
velocity. This weight increases as we move closer to the wall as
the velocity gradient increases towards the wall. Renard’s for-
mulation shows that in high Reynolds number ZPG TBL flows,
the excess friction induced by turbulence is mostly located in
the logarithmic layer [6].

Results and Discussion

Variation of C f and its components with pressure gradient

The variation of skin friction coefficient calculated based on
wall shear stress (C fw ) and Renard’s formulation (C f ) with pres-
sure gradient can be seen in Figure 2.

Wall shear stress (τw) and C fw are defined as follows [5].

τw = µ
d〈u〉
dy

∣∣∣∣
y=0

(10)

C fw =
τw

1
2 ρU2

e
(11)

C f based on Renard’s formulation and C fw are in close agree-
ment with each other. As β varies from 0 to 39, C f keeps reduc-
ing in Figure 2. With increasing pressure gradient, the bound-
ary layer expands more rapidly in the wall-normal direction as
it evolves in the streamwise direction. This reduces the mean
velocity gradient at the wall which results in a reduction of skin
friction coefficient with increasing pressure gradient. As the
pressure gradient is increased, the flow becomes more like a
free shear layer with the wall shear stress tending to zero.
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Figure 2: Variation of C f based on Renard’s formulation and
C fw with β in the respective DoI. x? is the streamwise position
where Reδ1 = 4800.

0 50 100 150 200
x− x⋆/δ1⋆x ⋆ )

0

1

2

3

4

1e−3
Cfa : β=0
Cfb : β=0
Cfc : β=0
Cfa : β=1
Cfb : β=1
−Cfc : β=1
Cfa : β=39
Cfb : β=39
−Cfc : β=39

Figure 3: Variation of the components of C f with β in the re-
spective DoI. Note that C f c is negative for β = 1 and β = 39. x?
is the streamwise position where Reδ1 = 4800.



In the wall reference frame, C f a signifies the direct dissipation
because of the viscous effects, C f b refers to the effect of turbu-
lent fluctuations and C f c signifies the spatial growth in the flow.
But when seen from the absolute reference frame, C f c/C f is the
efficiency at which the wall supplies energy to the fluid. C f a
and C f b are positive for all pressure gradients. Note that C f c is
positive only for ZPG case while it is negative for the other two
adverse pressure gradient cases.

As β increases, the contribution of the viscous effects (C f a) re-
duces and approaches zero in Figure 3. With increase of β, the
absolute values of C f b and C f c increases. It is also apparent
that the absolute values of C f b and C f c develops with a sharp
gradient in the streamwise direction for β = 39 when compared
to the other two cases. The positive contribution to C f by the
turbulent fluctuations is diminished by the negative contribution
from C f c. Still the dominant contribution to the skin friction co-
efficient for all the cases of β is from the Reynolds stress (C f b).
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Figure 4: The variation of the proportion of each component in
C f with β in the respective DoI. Note that C f c/C f is negative
for β = 1 and β = 39. x? is the streamwise position where Reδ1
= 4800.

The variation of the proportion of each component in C f with
β is seen in Figure 4. The proportion of the Reynolds stress
(C f b/C f ) increases by 14 times when β varies from 0 to 39. The
proportion of C f b and C f c increases drastically in the stream-
wise direction for β = 39 whereas they do not have steep gra-
dients for β = 0 and β = 1. C f c acts to cancel out the effect
of C f b. When closely observed, the proportion of C f a in C f
reduces with the pressure gradient. The ratio C f a/C f is approx-
imately 0.5 times smaller for β = 39 when compared to β = 0.
The viscous dissipation accounts for 35% of C f for β = 0 and
its contribution drops down to 17.5% for β = 39.

Analysis of the premultiplied integrands

Figures 5, 6 and 8 show the streamwise averaged profiles of
premultiplied integrand of each term of C f in the wall-normal
direction (y) within the DoI for various β. The wall normal
position is non-dimensionalised by the outer scale δ1. The

study based on the pre-multiplied integrands for a ZPG bound-
ary layer flow is also discussed in detail in [2, 6]. Hereafter,
the premultiplied integrand of each term of C f is denoted by the
subscript of *.

C f a∗ = y× 2ν

U3
e

(
∂〈u〉
∂y

)2
(12)

C f b∗ = y× −2〈u′v′〉
U3

e

∂〈u〉
∂y

(13)

C f c∗ = y× 2(〈u〉−Ue)

U3
e

∂

∂y

(
τ

ρ

)
(14)

The viscous dissipation (C f a∗) exhibits an inner peak for the
ZPG case in Figure 5. As the pressure gradient increases, the
inner peak diminishes substantially while an outer peak devel-
ops for β = 1. The profile is almost uniform throughout the
boundary layer for β = 39, with two similar tiny peaks in the
inner and outer regions.
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Figure 5: Variation of C f a premultiplied integrand (C f a∗) with
β. The profiles are averaged in streamwise direction within DoI
and are non-dimensionalised by δ1.

The variation of C f b∗ and C f c∗ with β is shown in Figure 6
and 8 respectively. The contribution of the turbulent fluctua-
tions (C f b∗) has an inner peak and a outer peak for ZPG case as
shown in Figure 6. As the pressure gradient increases, for β = 1,
the inner peak reduces while the outer peak grows into a domi-
nant one. For β = 39, the contribution from the Reynolds stress
is almost negligible in the inner region and is concentrated in
the outer region. β = 39 case has one predominant outer peak
without any inner peak. Figure 7 shows the Reynolds stress pro-
files (−〈u′v′〉) for all the pressure gradients. For β = 39,−〈u′v′〉
has an outer peak at y = δ1 which matches with the peak of the
C f b premultiplied integrand (C f b∗) in Figure 6.

C f c∗ in Figure 8 can be seen as the contribution of the pres-
sure gradient. For ZPG case, its contribution is almost negligi-
ble throughout the boundary layer in the wall normal direction
with a tiny peak in the outer region. As the pressure gradient
increases, for β = 1, a negative and a positive peak start to de-
velop in the outer region. These peaks are more pronounced and
dominant for β = 39 with the inflection point at y = δ1.
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Figure 6: Variation of C f b premultiplied integrand (C f b∗) with
β. The profiles are averaged in streamwise direction within DoI
and are non-dimensionalised by δ1.
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Figure 7: Variation of the Reynolds stress (−〈u′v′〉) with β. The
profiles are averaged in streamwise direction within DoI and are
non-dimensionalised by δ1 and Ue.

10−4 10−3 10−2 10−1 100 101
y/δ1

−2

0

2

C f
c
*

1e−3
β=0
β=1
β=39

Figure 8: Variation of C f c premultiplied integrand (C f c∗) with
β. The profiles are averaged in streamwise direction within DoI
and are non-dimensionalised by δ1.

Conclusions

With increasing pressure gradient, C f approaches zero as the
boundary layer expands more rapidly and the flow becomes
more like a free shear layer (Figure 2). When β changes from
0 to 39, the Reynolds stress remains the dominant contribu-

tor while its effects are reduced by the negative contribution
from C f c (Figure 3). The proportion of turbulent fluctuations
(C f b/C f ) increases with a steep gradient along the streamwise
direction for β = 39 (Figure 4). The contribution of viscous ef-
fects is 30% for β = 39 and it becomes half of it for β = 0. With
increasing β, the distribution of viscous effects becomes more
uniform in the wall normal direction (Figure 5) while the con-
tribution of the Reynolds stress remains as the dominant factor
with a clear outer peak at y = δ1 (Figure 6).
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