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Abstract

The stability of an asymptotic suction boundary layer is con-
sidered to investigate the effect of non-Newtonian viscosity on
the transition process from a laminar flow to a turbulent flow at
large Reynolds number. We present the derivation of the linear
stability equations for a generalised Newtonian flow. The nu-
merical solutions of a generalised Newtonian Orr-Sommerfeld
equation are obtained for neutral two-dimensional and three-
dimensional disturbances. The effect of non-Newtonian vis-
cosity on the critical Reynolds number reveal the stabilising
or destabilising effect for shear-thinning and shear-thickening
fluids. The results are compared to our previous results in the
absence of suction, presented in Griffiths et al. [4].

Introduction

We investigate the non-Newtonian flow past a flat plate, with
uniform suction applied at the surface. This flow exhibits a
constant boundary-layer thickness, making it attractive to nu-
merical and theoretical analysis. For a Newtonian flow, the
experimental and theoretical study of Fransson and Alfredsson
[3] on the stability of the asymptotic suction boundary layer
to Tollmien-Schlichting instabilities and free-stream turbulence,
found that uniform suction delayed transition to turbulence. Re-
cent interest for a Newtonian asymptotic suction boundary layer
has been in identifying coherent structures by Deguchi and Hall
[1] and a self-sustaining vortex/Tollmien-Schlichting wave in-
teraction by Dempsey and Walton [2]. The focus here is the ef-
fect of a non-Newtonian fluid and is motivated by applications
to use non-Newtonian flows to delay transition to turbulence.

As the first investigation for non-Newtonian flow in an asymp-
totic suction boundary layer this numerical and asymptotic
study considers a Carreau model for the non-Newtonian vis-
cosity. Our previous studies, [4] and [8], have shown that this is
more appropriate for unbounded shear flows than the power-law
model.

Formulation

Using Cartesian coordinates (x∗,y∗,z∗) we consider the flow of
a viscous generalised Newtonian fluid with uniform velocity U∗0
and viscosity µ∗ past a flat plate defined by y∗ = 0. Far from the
plate the x∗ velocity component tends to the constant U∗0 and
fluid is sucked through the plate with constant velocity V ∗0 . The
velocity field u∗ = (u∗,v∗,w∗) and the pressure p∗ satisfy the
continuity and Navier-Stokes equations, subject to the boundary
conditions

u∗ = (0,−V ∗0 ,0) at y∗ = 0, (1)

and
u∗→ (U∗0 ,−V ∗0 ,0) as y∗→ ∞. (2)

Generalised Newtonian fluids are characterised by the viscos-
ity being a function of the strain rate. They are appropriate to
fluids exhibiting no yield stress (free from elastic effects). The

Carreau model for a generalised Newtonian fluid states that

µ∗ = µ∗∞ +(µ∗0−µ∗∞)[1+(λ∗γ̇∗)2]
n−1

2 . (3)

Here µ∗0 is the viscosity at zero shear rate, µ∗∞ is the limiting
constant viscosity at infinite shear rate, λ∗ > 0 is a characteristic
time constant and γ̇∗ is the second invariant of the rate of strain
tensor. When λ∗= 0 or n= 1 we have a Newtonian fluid. Values
of 0 < n < 1 correspond to shear-thinning fluids, while n > 1 is
appropriate for shear-thickening fluids. Now write

µ∗

µ∗0
=

µ∗∞
µ∗0

+

(
1− µ∗∞

µ∗0

)
[1+(λ∗γ̇∗)2]

n−1
2 , (4)

where typically µ∗∞/µ∗0� 1. Thus, in the analysis to follow, we
consider the modified Carreau model where

µ∗

µ∗0
= [1+(λ∗γ̇∗)2]

n−1
2 . (5)

We non-dimensionalise lengths, time, velocity and pressure
with respect to ν∗/V ∗0 , ν∗/(U∗0 V ∗0 ), U∗0 and ρ∗U∗0

2, respectively,
where ρ∗ is the fluid density and ν∗ = µ∗0/ρ∗.

For a modified Carreau fluid then, following the above non-
dimensionalisation,

µ = µ∗/µ∗0 =
(

1+λ
2
γ̇

2
) n−1

2
. (6)

For this non-Newtonian flow, the non-dimensional basic flow
quantities satisfy

dv
dy

= 0 ⇒ v =−1/R, (7)

v
du
dy

=
1
R

[
1+n

(
λ

du
dy

)2
][

1+
(

λ
du
dy

)2
] n−3

2 d2u
dy2 , (8)

where the Reynolds number R =U∗0 /V ∗0 . The boundary condi-
tons are

u = v+ 1/R = 0 at y = 0,

and
u→ 1, v→ −1/R as y→ ∞.

Here the viscosity

µ =

[
1+
(

λ
du
dy

)2
] n−1

2

. (9)

For a Newtonian flow these equations have the simple solution
u = 1− e−y and v = −1/R. For a non-Newtonian flow these
equations are solved numerically. The solutions of equation (8)
for u for a range of shear-thinning flows with λ = 1 is shown in
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Figure 1: The basic flow solutions for u for a range of values of
n with λ = 1.

figure 1. We see that the velocity tends to the free-stream ve-
locity exponentially as y increases. Furthermore, as n decreases
the boundary layer becomes thinner.

Linear stability analysis

We perturb the basic flow and write

u = Ub + ũ(x,y,z),
v = −1/R+ ṽ(x,y,z),
w = 0+ w̃(x,y,z)
p = constant+ p̃(x,y,z).

The viscosity is given by

µ =

{
1+2λ

2

[(
∂u
∂x

)2
+

(
∂v
∂y

)2
+

(
∂w
∂z

)2
]

+λ
2
[(

∂u
∂y

)
+

(
∂v
∂x

)]2
+λ

2
[(

∂u
∂z

)
+

(
∂w
∂x

)]2

+λ
2
[(

∂v
∂z

)
+

(
∂w
∂y

)]2
} n−1

2

.

Substituting the disturbed flow into the governing continuity
and Navier–Stokes equations, and linearising for small distur-
bances, yields the following perturbation equations

∂ũ
∂x

+
∂ṽ
∂y

+
∂w̃
∂z

= 0,(
∂

∂t
+Ub

∂

∂x
− 1

R
∂

∂y

)
ũ+

∂Ub

∂y
ṽ =−∂ p̃

∂x
+

1
R

{
2

∂

∂x

(
Mb

∂ũ
∂x

)
+

∂

∂y

[
Nb

(
∂ũ
∂y

+
∂ṽ
∂x

)]
+

∂

∂z

[
Mb

(
∂ũ
∂z

+
∂w̃
∂x

)]}
,(

∂

∂t
+Ub

∂

∂x
− 1

R
∂

∂y

)
ṽ =−∂p̃

∂y
+

1
R

{
2

∂

∂y

(
Mb

∂ṽ
∂y

)
+

∂

∂x

[
Nb

(
∂ũ
∂y

+
∂ṽ
∂x

)]
+

∂

∂z

[
Mb

(
∂ṽ
∂z

+
∂w̃
∂y

)]}
,(

∂

∂t
+Ub

∂

∂x
− 1

R
∂

∂y

)
w̃ =−∂ p̃

∂z
+

1
R

{
2

∂

∂z

(
Mb

∂w̃
∂z
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+

∂

∂x

[
Mb

(
∂ũ
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+
∂w̃
∂x
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+

∂

∂y
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Mb

(
∂ṽ
∂z

+
∂w̃
∂y

)]}
,

where

Mb =

[
1+λ

2
(

∂Ub

∂y

)2
] n−1

2

,

Nb =

[
1+nλ

2
(

∂Ub

∂y

)2
][

1+λ
2
(

∂Ub

∂y

)2
] n−3

2

.

If the disturbances are assumed to have the normal-mode form,
so being proportional to exp(i(αx−ωt)+ iβz), the linear distur-
bance equations become

iαû+ v̂′+ iβŵ = 0, (10)
R[i(αUb−ω)û+U ′bv̂+ iα p̂]− û′

= µ̄(û′′− γ
2û)+ µ̄′(û′+ iαv̂)+ ν̄(γ2û+ iαv̂′), (11)

R[i(αUb−ω)v̂+ p̂′]− v̂′

= µ̄(v̂′′− γ
2v̂)+2[µ̄′v̂′− (ν̄v̂′)′]− ν̄[β(iŵ′−βv̂)],(12)

R[i(αUb−ω)ŵ+ iβp̂]− ŵ′

= (µ̄− ν̄)(ŵ′′− γ
2ŵ)+(µ̄− ν̄)′(iβv̂+ ŵ′), (13)

where γ2 = α2 +β2, the primes denote differentiation with re-
spect to y and the viscosity functions µ̄ and ν̄ are defined as

µ̄ = [1+n(λU ′b)
2][1+(λU ′b)

2](n−3)/2, (14)

ν̄ = (n−1)(λU ′b)
2[1+(λU ′b)

2](n−3)/2. (15)

Numerical results

The system of equations (10–15) represents a coupled quadratic
eigenvalue problem for α. This problem is solved subject to no-
slip at the wall and decaying perturbations far from the wall.

The neutral temporal and spatial stability of the system was de-
termined using a Chebyshev polynomial discretization method.
The Gauss–Lobatto collocation points were transformed into
the physical domain via an exponential map. The boundary
conditions were then imposed at y = 0 and y = ymax, where the
value of ymax is such that the steady mean flow results had con-
verged to within some desired tolerance, typically, 10−10. In
each case considered it was found that the value of ymax that
ensured mean flow convergence also ensured that both the real
and imaginary parts of the solution for α had converged to at
least four decimal places.

In all cases 100 collocation points were distributed, via the ex-
ponential map, between the upper and lower boundaries. Fur-
ther increasing the number of collocation points revealed no dis-
cernible difference in the numerical results.

The stability equations were then solved in terms of primitive
variables at each of the collocation points, excluding those on
the boundary edges. This global eigenvalue solution method
is favourable when compared to local (Orr–Sommerfeld) ap-
proaches as it is possible to simultaneously obtain all of the
eigenvalues and eigenvectors.

We present the numerical results for shear-thinning fluids with
λ = 1 for 0 < n < 1 and the Newtonian case n = 1. The neutral
results for wavenumber α and frequency F = ω/R are shown in
figures 2 and 3 for the two-dimensional case β = 0. The cor-
responding results for the three-dimensional case with β = 0.1
are shown in figures 4 and 5. The numerical results show that
in both cases the critical Reynolds number increases as n de-
creases. Thus, this shear-thinning non-Newtonian flow is more
stable than the corresponding Newtonian one.
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Figure 2: The neutral wavenumber α versus R for β = 0.
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Figure 3: The neutral frequency F versus R for β = 0.

This result for the asymptotic suction boundary layer is opposite
to the behaviour found for the Blasius boundary layer in [4].
There it was found that the effect of non-Newtonian viscosity
was to destabilise the flow for shear-thinning fluids, i.e. the
critical Reynolds number decreases as n decreases.

The fact that the effect of non-Newtonian viscosity differs be-
tween Blasius flow and the asymptotic suction boundary layer
warrants further investigation. In order to make comparisons
results have been obtained for the same values of viscosity at
the wall, as was considered by Griffiths [8]. Specifically, solu-
tions of equations (8) and (9) were obtained for u and µ for a
range of values of n, where λ was determined for each n such
that the viscosity at maximum shear rate (at the wall) was the
same value. The solutions for µ where µ(0) = 0.5 are shown in
figure 6. With this value of viscosity at the wall the results for
λ for each n considered are shown in table 1.

n λ

0.8 6.5826
0.6 1.4219
0.4 0.9097
0.2 0.7157

Table 1: Values of λ for a range of values of n for µ(0) = 0.5.

The corresponding neutral curves for fixed µ(0) for the two-
dimensional case β = 0 for α and F = ω/R (not shown) reveal
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Figure 4: The neutral wavenumber α versus R for β = 0.1.
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Figure 5: The neutral frequency F versus R for β = 0.1.

the same behaviour illustrated in figures (2–3), namely that the
critical Reynolds number increases as n decreases. This is not
unexpected since the values of λ are not too different.

Conclusions

Our numerical solutions show that for the asymptotic suction
boundary layer the critical Reynolds number increases as n
decreases for shear-thinning fluids. These preliminary results
suggest that transition to turbulence in an asymptotic suction
boundary layer may be delayed for a non-Newtonian fluid com-
pared to a Newtonian one. Thus, this could provide a mecha-
nism for controlling turbulent flow.

For the current problem, ongoing calculations of the growth
rates are underway. It was found in [4] that the growth rates
increase as n decreases for the Blasius boundary layer. We ex-
pect to report on these in the presentation. The effect of the
non-Newtonian flow on the growth rates will provide a clearer
picture of the overall effect on the stability of the asymptotic
suction boundary layer.

Further results need to be obtained for the three-dimensional
case when the viscosity at the wall is kept the same for dif-
ferent values of n. This exercise also needs to be repeated for
the Blasius boundary layer to further investigate the seemingly
opposite effect of non-Newtonian viscosity on the stability of
the Blasius boundary layer and the asymptotic suction boundary
layer. This is the focus of our current numerical investigations.
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Figure 6: The basic flow solutions for µ for a range of values of
n with µ(0) = 0.5.

An asymptotic description of the linear stability modes for this
problem will be useful. We are currently conducting such a
study. For a Newtonian flow the linear stability of the asymp-
totic suction boundary layer has been investigated recently by
Dempsey and Walton [2]. Following their analysis for neu-
tral lower-branch modes we introduce ε = R−1/4 and the new
variables (X ,Z) = ε(x,z), T = ε2t. The small disturbances are
taken to be proportional to E = exp(iα(X− cT )+ iβZ)). The
disturbed flow is governed by a triple-deck structure.

For the Newtonian case, Dempsey and Walton [2] derived the
following linear dispersion relation

i5/3 Ai′(ξ0)

κ0
+α

1/3
√

α2 +β2 = 0, ξ0 =−i1/3
α

1/3c,

where Ai is the Airy function and κ0 =
∫

∞

ξ0
Ai(s)ds. This was

solved for fixed β, yielding solutions for α and c which agree
well with the lower branch of the neutral stability curve.

The asymptotic analysis for a non-Newtonian flow is similar,
but it is complicated by the nonlinear viscous terms in the lower
deck. We hope to report on the results shortly, which will al-
low preditions of the effect of non-Newtonian flow to be readily
obtained. Asymptotic results have previously been obtained for
lower-branch modes in the Blasius boundary layer for a modi-
fied Carreau fluid in [4], in agreement with the numerical results
of that study.
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