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Abstract

Inertial lift is a fluid phenomena exploited in microfluidic de-
vices to separate particles/cells based on their size. Whilst it
has been studied extensively for spherical particles suspended
in flow through straight ducts, typically of rectangular shape,
many applications involve ducts that are curved. This paper ex-
plores the estimation of focusing behaviour in curved ducts by
simply adding inertial lift forces computed for a straight duct
(having the same cross-section) to the drag forces within the
cross-sectional plane which are generated by the secondary mo-
tion of the fluid flow through the curved duct. We examine the
specific case of a curved rectangular duct with height `, width
2` and bend radius R in which a neutrally buoyant particle with
radius a is suspended. The simple force model is appropriate
when R is large and the flow rate is low such that the Dean num-
ber is small. The magnitude of the secondary flow drag relative
to the inertial lift force scales with κ = `4/(a3R) and the domi-
nant focusing behaviour is found to approximately collapse onto
a single curve when plotted against κ, particularly when κ≤ 30.

Introduction

In this study the perturbing force on a neutrally buoyant particle
suspended in flow through a curved duct having a rectangular
cross-section is approximated by adding the lift force experi-
enced by the particle in a straight duct to the drag force from
the secondary motion of a fluid flowing through a curved duct
(having the same cross-section in each case). This approxima-
tion was suggested in the microfluidics literature [2] but has yet
to have been investigated in detail to the best of our knowledge.
Whilst it has also been suggested that the modification of the ax-
ial flow profile at higher Dean numbers may also play a role [8]
we restrict this study to small Dean numbers. Experiments typi-
cally involve spiral shape devices although it has been observed
that the flow in a spiral is close to that obtained by treating the
bend radius to be (locally) constant [4]. As such we expect that
studies of inertial lift in ducts having constant bend radius will
provide a good estimate of the focusing behaviour in a spiral
device having similar bend radius near the outlet.

We begin by briefly outlining the way in which both the inertial
lift force and the drag force from the secondary fluid motion
are estimated. The calculation of the inertial lift force assumes
that the particle Reynolds number Rep is small and is based
upon the approach in [5]. In particular, the inertial lift is cal-
culated for a particle suspended in Poiseuille flow through a
straight duct. This is sensible if one assumes that the bend ra-
dius is sufficiently large that any local of portion of the duct
around a particle can be reasonably approximated as straight
and, additionally, the Dean number Dn is small enough that
the main axial flow in the corresponding curved duct is close
to Poiseuille flow. Given that Dn is taken to be small we ap-
proximate the steady fluid flow through a curved duct (in the
absence of a particle) using a perturbation expansion with re-
spect to K = Dn2 which leads to a convenient separation of the
leading order components of the axial and secondary flow mo-
tion. The drag force from the secondary flow motion can then

be approximated by solving an appropriate Stokes problem in
the straight duct whereby the secondary flow velocity is used
to impose boundary conditions on the particle. The inertial lift
and drag forces are then combined and it is observed that the
scale of the secondary flow drag relative to the inertial lift force
is given by κ = `4/a3R.

The combined force is then examined for four different particle
sizes. With a fixed bend radius we observe a vertically sym-
metric pair of stable equilibria within the cross-section towards
which the majority of particles will eventually migrate/focus.
The horizontal location of the pair differs for each particle size
due to the way the inertial lift force and secondary flow drag
interact. Upon examining how the horizontal location varies
with the bend radius it is found that the ordering of focused
particles changes several times in relation to their size. This
behaviour is observed to approximately collapse onto a single
curve when plotted against κ, particularly for smaller values of
κ. For κ� 30 and κ� 30 the majority of particles migrate
towards the centre (horizontally), whilst in between particles
migrate towards the inside wall. We conclude that the dimen-
sionless parameter κ could potentially be useful in character-
ising the focusing behaviour of particles within curved ducts
under appropriate flow conditions and that this warrants further
investigation.

Methodology

Estimation of the inertial lift force

The inertial lift force on a neutrally buoyant spherical particle
with radius a suspended in flow through a straight duct is es-
timated via the perturbation expansion of the inertial lift force
developed in [5, 6]. Let µ,ρ denote the viscosity and density of
the fluid respectively. Consider a straight duct with rectangu-
lar cross-section [−`,`]× [−`/2, `/2] (i.e. having width 2` and
height `) through which there is a steady pressure driven flow
in the z direction with velocity distribution ūuus = (0,0, w̄s). We
refer to ūuus as the background flow which in this case is sim-
ply Poiseuille flow through the duct (the subscript s is used to
differentiate this from steady flow in a curved duct introduced
later). Now consider adding the particle to the flow and suppose
at some moment in time it is located at xxxp = (xp,yp,0) with
xp ∈ [−`+a, `−a] and yp ∈ [−`/2+a, `/2−a] and has (con-
stant) velocity uuup = (0,0,wp) and spin ΩΩΩp = (Ωp,x,Ωp,y,0).
The estimation of the inertial lift force Lx,Ly in the x,y direc-
tions respectively acting on the particle at this instant are then
estimated as follows. One first determines the leading order
disturbance to the background flow, denoted as the disturbance
pressure q0 and velocity vvv0, which is the solution to

−∇q0 +µ∇
2vvv0 = 000 , ∇ · vvv0 = 0 , (1)

with the boundary conditions vvv0 = 000 on the duct walls and vvv0 =
ΩΩΩp× (xxx− xxxp)+uuup− ūuus on the particle surface. In solving this
equation one determines the values of wp,Ωp,x,Ωp,y such that
the there is no net force or torque on the particle from the q0,vvv0



component of the disturbance flow, that is

000 =
∫
|xxx−xxxp|=a

−q0nnn+µnnn ·
(
∇vvv0 +∇vvvᵀ0

)
dS , (2)

000 =
∫
|xxx−xxxp|=a

(xxx− xxxp)×
(
−q0nnn+µnnn ·

(
∇vvv0 +∇vvvᵀ0

))
dS , (3)

where the normal nnn is taken as pointing outwards from the parti-
cle centre. Note it is sufficient to consider only the z component
of (2) and the x,y components of (3). The inertial lift force
Lx,Ly can then be estimated from forces on the particle exerted
by the next order approximation of the disturbance flow with
respect to the particle Reynolds number Rep = (ρ/µ)Uma2/`
(where Um is the maximum of ūuus). However, a form of the
Lorentz reciprocal theorem allows Lx,Ly to be estimated di-
rectly from q0,vvv0 as

L∗ :=−ρ

∫
F

ûuu∗ ·
(
vvv0 ·∇ūuus +(vvv0 + ūuus−uuup) ·∇vvv0

)
dV ,

for ∗ = x,y, where F denotes the fluid domain (i.e. the inte-
rior of the duct excluding the particle) and the velocity term ûuu∗,
along with a pressure p̂∗, solve (1) with the boundary condition
ûuu∗ = 000 on the duct walls and ûuu∗ = êee∗ on the particle surface
(with êee∗ denoting the usual unit normal in the ∗ direction).

This brief account has been given in a dimensional setting but is
straightforward to non-dimensionalise via the spatial scale a and
velocity scale Uma/` (with remaining quantities then following
the standard non-dimensionalisation of viscous flows, see [5]).
Note in particular that this leads to a non-dimensionalisation of
the lift force as (Lx,Ly) = (ρU2

ma4/`2)(L̂x, L̂y). The resulting
(L̂x, L̂y) is strongly dependent on the particle position (xp,yp)
whereas changes with respect to a/` are generally subtle.

We estimate L̂x, L̂y by solving the requisite Stokes problems us-
ing the finite element method. The computational domain con-
sists of a portion of the (straight) duct in a neighbourhood of
the particle discretised with upwards of 106 tetrahedral cells.
The solution of the standard weak form of (1) using a Taylor–
Hood (P2,P1) basis is implemented using the FEniCS frame-
work [7, 1]. The inertial lift force is calculated with the parti-
cle centred at a large number of equally spaced points within
the cross-section which are then interpolated using a bivariate
spline of degree 3. To avoid difficulties that can arise when the
particle surface is very close to a wall we only compute L̂x, L̂y
for particles placed at least `/40 away from the duct walls.

Estimation of drag force from secondary flow motion

To estimate the drag forces on the particle from the secondary
fluid motion within the curved duct we first approximate the
steady fluid flow using the Rayleigh–Ritz approximation de-
scribed in [3]. The method is derived via a perturbation ex-
pansion of the background flow with respect to the square of
the Dean number K = Dn2 where Dn = (ρ/µ)Um(`/2)

√
δ and

δ = `/2R. This allows the flow to be expanded as

w̄(x,y) =
∞

∑
n=0

Knw̄n(x,y) , Φ(x,y) =
∞

∑
n=0

Kn
Φn(x,y) ,

where w̄ denotes the axial flow velocity and Φ denotes the
stream-function of the secondary flow. A (bivariate) polynomial
approximation to each w̄n,Φn, up to some finite N, is obtained
by finding the coefficients that minimise appropriate function-
als. The separation of the axial and secondary flow components
proportional to powers of K is particularly useful in this con-
text where we require only an approximation of the secondary
flow drag up to the same power of Um to which the inertial lift

force is estimated. This would be more difficult with an expan-
sion of the background flow with respect to δ which is another
common choice in studies of flow through curved ducts, see for
example [9]. Another advantage of the method is that it han-
dles different cross-section shapes with ease which, although
not needed for this particular study, is anticipated to be useful
in future studies involving non-rectangular cross-sections.

For small Dn we note that it is sufficient to approximate the flow
via the leading order terms w̄0,Φ0. Furthermore, given large R,
one may also use the Dean approximation in which case one has

−G
µ
=

∂2w̄0

∂x2 +
∂2w̄0

∂y2 ,

ρ

µ
2w̄0

R
∂w̄0

∂y
=

∂4Φ0

∂x4 +2
∂4Φ0

∂x2∂y2 +
∂4Φ0

∂y4 ,

along with no-slip boundary conditions, where G is a pres-
sure gradient driving the flow. The resulting approximation
of the axial flow component w̄ ≈ w̄0 is exactly Poiseuille flow
through a straight duct further justifies why the inertial lift
force in the curved duct can be estimated using a straight duct.
The leading order x,y components of the fluid velocity, de-
noted ū0, v̄0 respectively, are recovered via ∂Φ0/∂x = v̄0 and
∂Φ0/∂y =−ū0. With Um = max w̄0 then ū0, v̄0 can be shown to
scale as Dn

√
δUm and thus we introduce the dimensionless vari-

ables (ū0, v̄0) =
√

δDnUm( ˆ̄u0, ˆ̄v0) such that the resulting ˆ̄u0, ˆ̄v0
are effectively independent of R.

Given ū0, v̄0, the resulting drag on a small spherical particle
(with radius a and centred at xxxp) could be estimated via Stokes
drag law. However, the resulting estimate fails to take into ac-
count the effect of the finite size of the particle and the duct
walls. A better approximation of the drag force from the sec-
ondary fluid motion, denoted Dx,Dy, can be obtained by solving
an additional Stokes problem in the straight duct and integrat-
ing the resulting fluid stresses over the particle surface. One first
finds vvvc,qc which solve (1) with the boundary condition vvvc = 000
on the walls of the duct and vvvc =−ū0êeex− v̄0êeey. Each Dx,Dy is
then estimated via

D∗ = êee∗ ·
∫
|xxx−xxxp|=a

−qcnnn+µnnn ·
(
∇vvvc +∇vvvc

ᵀ)dS .

We again use the finite element method for these calcula-
tions. The drag can be non-dimensionalised as (Dx,Dy) =

µa
√

δDnUm(D̂x, D̂y). The resulting (D̂x, D̂y) is strongly depen-
dent on the particle location (xp,yp) whereas changes with re-
spect to a/` are relatively small. Note that z component of the
drag is neglected since the particle was assumed to have reached
terminal velocity in this direction for the purpose of estimating
the inertial lift force.

Combining the two forces

Given the first order estimates of Lx,Ly and Dx,Dy we now need
only add the two and analyse the resulting force to determine if
there exist equilibrium positions within the duct cross-section
which particles will migrate towards. In dimensional form one
obtains

F∗ := L∗+D∗ = ρU2
m

a4

`2 L̂∗(xp,yp)+
1
4

ρU2
m

a`2

R
D̂∗(xp,yp) ,

for each ∗= x,y. It is convenient to non-dimensionalise the total
force via the scaling of the inertial lift component, that is upon
setting (Fx,Fy) = (ρU2

ma4/`2)(F̂x, F̂y) one obtains

F̂∗(xp,yp) = L̂∗(xp,yp)+
κ

4
D̂∗(xp,yp) , (4)
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Figure 1: Magnitude of the total force (F̂x, F̂y) on a particle with
radius 2a/`= 0.05. See text for a description.
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Figure 2: Magnitude of the total force (F̂x, F̂y) on a particle with
radius 2a/`= 0.10. See text for a description.

where κ := `4/a3R captures the magnitude of the secondary
flow drag relative to the inertial lift force. The location of
equilibria within the cross-section for a given particle size are
the zeros of (F̂x(xp,yp), F̂y(xp,yp)) and the stability of each is
straightforward to determine from the eigenvalues of the Jaco-
bian.

Results and discussion

We examine the total force (4) for four different sized particles,
specifically 2a/` = 0.05,0.10,0.15,0.20. In Figures 1,2,3,4
we plot the magnitude of the force on the particle (that is
(F̂2

x + F̂2
y )

0.5) for each particle size and with δ = 0.001. To aid
in the identification of equilibria we also plot the zero level set
contour of F̂x (black) and F̂y (white). Equilibrium positions are
located where the two zero level set contours intersect. Arrows
indicate the sign of F̂x (black) and F̂y (white) in one particular
region. These can be used to visually identify the stability of
some equilibria noting that the sign changes whenever the cor-
responding zero contour line is crossed.

In Figure 1, where 2a/` = 0.05, the inertial lift force and sec-
ondary drag have similar magnitude and interact to produce the
total force shown. Three equilibria are readily identified, one
near the right (outside) wall of the duct which is unstable, and a
pair near the left (inside) wall of the duct which are positioned
symmetrically with respect to y. The stability of the latter two is
difficult to infer visually in this case but the eigenvalues of the
Jacobian are negative and thus they are stable. Further exami-
nation suggests that all particles initially in the upper half will
migrate to the upper of the stable equilibria pair whilst those
initially in the lower half will migrate towards the lower of the
equilibria pair.

In Figures 2,3,4, where 2a/`= 0.10,0.15,0.20 respectively, the
secondary flow drag is becoming smaller relative to the inertial
lift force as the particle size increases. Five equilibria are read-
ily identified in the latter two figures whereas there are seven
in Figure 2 (three are near the left wall where the zero contour
lines of F̂x, F̂y are almost overlapping and are difficult to identify
visually). In Figures 3 and 4 the three equilibria centred verti-
cally are unstable whilst the remaining symmetric pair is stable.
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Figure 3: Magnitude of the total force (F̂x, F̂y) on a particle with
radius 2a/`= 0.15. See text for a description.

0
2
4
6
8
10
12
14

Figure 4: Magnitude of the total force (F̂x, F̂y) on a particle with
radius 2a/`= 0.20. See text for a description.

All particles will again migrate towards one of the two stable
equilibria depending on whether they are initially in the upper
of lower half. Three of the seven equilibria in Figure 2 are sta-
ble, two are again the symmetric pair whilst a third is close to
the left wall and centred vertically. The additional stable equi-
libria near the left wall is effectively a left over equilibria that
occurs for small particles travelling through straight rectangular
ducts for which it is known relatively few particles will migrate
towards [6]. Observe there are three unstable equilibria in close
proximity which effectively repel particles from this additional
stable equilibria that are not sufficiently close to it initially.

The horizontal location of the stable equilibrium pair that oc-
curs in each case shifts from being near the left (inside) wall
towards the centre for increasing particle size. This is sugges-
tive of the size based focusing that is observed and exploited
in spiral microfluidic devices. To examine how this is influ-
enced by the bend radius we plot the horizontal location of the
stable equilibria for each particle size over a range of δ−1 (or
equivalently R) in Figure 5. The main effect of changing δ−1

is a change in a magnitude of the secondary drag relative to
the inertial lift force. There are several things to note in this
plot. The first is that for very large 2R/` a stable equilibria
appears near the right wall for the smallest particle (at around
2R/` = 8192). Likewise, additional stable equilibria appear
near the left wall for the two smaller particle sizes, although
they first appear for smaller 2R/` (at around 2R/` = 724,4096
for 2a/`= 0.10,0.05 respectively). These are explained by the
secondary flow drag vanishing for large δ−1 leaving only the in-
ertial lift force which predicts the extra equilibria near the side
walls of a straight rectangular duct for sufficiently small parti-
cles. As noted previously, relatively few particles are expected
to migrate towards these additional equilibria in practice and so
these points will be ignored in the remainder of the discussion.
The remaining points in the plot correspond to the horizontal
location of the vertically symmetric stable equilibria pair. Ob-
serve the behaviour is somewhat complex with the ordering of
the focusing position with respect to the different particle sizes
changing several times over the range of 2R/` considered. For
example, at δ−1 = 30 the ordering of the particles is largest to
smallest going from the inside wall towards the centre of the
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Figure 5: Focusing position of different size particles versus
δ−1 = 2R/`. Particle sizes (expressed as 2a/l) are 0.05 (blue,
circle), 0.10 (green, triangle), 0.15 (red, square) and 0.20 (cyan,
diamond).
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Figure 6: Focusing position of different size particles versus
`4/a3R. Particle labels are the same as in Figure 5. Note that
the data for different size particles covers different portions of
the range of the horizontal axis. Also note that the vertical axis
includes only the half of the duct toward the inside of the bend.

duct. On the other hand, at δ−1 = 1000 the ordering is reversed
(ignoring the additional equilibria of the second smallest parti-
cle). Numerous other orderings can be observed for values of
δ−1 in between these two examples. These results suggest that
the order in which different sized particles are collected in a spi-
ral microfluidic device may be quite sensitive to the bend radius
near the outlet.

In Figure 6 we plot the same data but this time against the ra-
tio κ = `4/a3R. Here we observe that the curves approximately
collapse, especially so in the half with κ < 30. Small values of
κ are where the inertial lift force is dominant whilst large val-
ues are where the secondary flow drag is dominant. Note the
additional ‘tail’ near the left wall for the two smaller particle
sizes with κ < 30 is again the additional equilibria near the left
wall in which relatively few particles are expected to be found
in practice. For the remaining points we observe the general
trend is for particles to focus near the centre for small κ, and
migrate towards the left (inside) wall as κ increases and then
back towards the centre for very large κ. Another trend high-
lighted in this figure is that smaller particles get much closer to
the inside wall than larger particles before migrating back to-
wards the centre. Recall that this model of the total force is
generally only expected to be valid when R is quite large (and
thus for small κ). Nonetheless the extrapolated results for larger
κ provide some insight into what might occur for smaller values
of R. Interestingly our results never predict the horizontal loca-
tion of the dominant equilibria pair to be on the right side of the
duct whereas some experimental results do predict particles in
this region [8]. This behaviour may be an effect of higher flow
rates, e.g. in which the background flow profile becomes in-

creasingly skewed towards the outer wall, which is not captured
by this simple model.

Conclusions

We have investigated a simple model for estimating the focus-
ing behaviour of particles in curved ducts by superimposing the
inertial lift force in a straight duct with the drag force from the
secondary component of the Dean flow that develops in curved
ducts as suggested in [2]. Our brief investigation for a duct
having a rectangular cross-section demonstrates that the focus-
ing order is quite sensitive to both the particle size and bend
radius. Further, whilst this behaviour initially seems quite com-
plex we show that it approximately collapses onto a single curve
when plotted against the ratio κ = `4/a3R. The dominant sta-
ble equilibria pair, which originates from inertial lift forces in a
straight duct, is found to shift towards the inside wall and then
back towards the centre with increasing κ. The dimensionless
parameter κ could potentially be applied to estimate the focus-
ing position of particles through curved rectangular microfluidic
ducts operating at a sufficiently low flow rate. This brief study
could be extended in several ways including (but not limited
to) an investigation of additional cross-section shapes, further
comparison with experimental data and development of a more
general model.
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