Numerical Investigation of Secondary Flows in a Turbulent Pipe Flow with Sinusoidal Roughness

L. Chan, M. MacDonald, D. Chung, N. Hutchins and A. Ooi

Department of Mechanical Engineering
The University of Melbourne, Victoria 3010, Australia

Abstract
Recent research on turbulent flow over heterogeneous rough walls has reported the occurrence of secondary motions which extend to the edge of the boundary layer. In this study, direct numerical simulations (DNSs) of turbulent flow in a rough-wall pipe are conducted where the pipe surface consists of a three-dimensional sinusoidal surface. The roughness semi-amplitude height (h^*) is fixed at 60 viscous units while the wavelength of the roughness elements is varied to investigate the effects of solidity or effective slope (ES). The rough-wall cases, which vary from the wavy regime ($ES = 0.18$ with a viscous roughness wavelength, $\lambda^* = 848$) to the closely packed roughness/dense regime ($ES = 0.72$, $\lambda^* = 212$), have a staggered arrangement. Using the triple decomposition, the time-independent dispersive stresses, which arise due to the stationary features of the flow, are found to increase in magnitude with roughness wavelength. These dispersive stresses, which are maximum in the roughness canopy, are due to the occurrence of secondary flows. These secondary flows transport high-speed fluid from the outer region to the near-wall region and pump low-speed fluid from the near-wall region to the outer region. For the range of cases simulated here, the wall-normal and spanwise extent of these secondary motions are found to scale with the roughness spanwise wavelength. This gives an indication of how the roughness sublayer is related to the degree of surface heterogeneity, with spanwise homogeneous flow only observed once the distance from the wall exceeds the spanwise spacing of the roughness. For the case with the largest wavelength ($ES = 0.18$), the secondary flows occupy a significant portion of the pipe cross-section.

Introduction
There have been a spark of interest in the occurrence of secondary flows in wall-bounded turbulent flows over heterogeneous roughness in recent years, particularly due to the papers by [14] and [2]. They found that the turbulent flow over their highly irregular test surface (a damaged turbine blade due to the deposition of foreign material) resulted in alternating regions of secondary flows which disrupt the near-wall canonical three-dimensional sinusoidal roughness elements. Figure 1 shows a sketch of the computational domain and highlights some of the characteristics of the roughness. A periodic boundary condition is applied to the ends of the pipe and the no-slip impermeable boundary condition is used for the pipe’s surface. The turbulent flow is simulated at a friction Reynolds number of $Re_t = 540$ (where $Re_t = Re_U/l_s$, Re_U is the friction Reynolds number, U_s is the time-space averaged friction velocity, and ν is the kinematic viscosity). x, y, and θ are the streamwise, radial and azimuthal directions, x is the wall-normal direction where the virtual origin is set to be located at the mean/reference radius of the pipe ($y^* = 0$ at R_0). Further details of the numerical method used can be found in [3].

Throughout the paper, the roughness cases are identified by the following identifying code

\[
\begin{array}{ccc}
\hline
\text{h}^* & \text{λ}^* & \text{ES} \\
\hline
\end{array}
\]

(1)

where the first two digits represent the roughness semi-amplitude height and the last three digits represent the streamwise or spanwise wavelength of the roughness elements ($\lambda_{h} = \lambda_{s}$). The computational details and mean flow properties of the rough cases are tabulated in table 1.

Second-order Statistics
To analyse the turbulent flow over roughness, the triple decomposition is applied to the turbulent quantity where it is decom-
posed into three components [16, 6],

\[u_i = U_i + \bar{u}_i + u''_i. \]

Here, \(U_i = \langle U \rangle \) is the spatial and temporal averaged mean, which is also known as the global mean and \(\bar{u}_i = \overline{\pi_i - U_i} \) is the spatial variation of the time-averaged flow around individual roughness elements (also known as the coherent or dispersive component). \(u''_i \) is the turbulent fluctuation. For a smooth wall, \(\bar{u}_i = 0 \) and therefore \(U_i = \overline{\pi} \). The triple decomposition is a result from double averaging, where the governing equations are averaged over time and then in space. This technique has been used to analyse plant canopy flows (urban-canopy model [15, 7, 8] and also in numerical simulations of turbulent flows over roughness [9, 4, 10]).

Figure 2 shows the root-mean-squared (rms) of the turbulent fluctuation and also the coherent fluctuation of the streamwise velocity. Good collapse with the smooth wall profile in the outer region is observed for the streamwise velocity turbulence fluctuation stress. The coherent fluctuations increase significantly with increasing roughness wavelength. The streamwise velocity coherent stress is dominant within the roughness canopy but drops to zero above the crest of the roughness at wall-normal heights proportional to the wavelength of the roughness. For case 60,848, the coherent stress extends up to \(y^+ \approx 300 \) (more than half of the boundary layer thickness) indicating large time-independent fluctuating motions in the flow due to the roughness.

In figure 3, the coherent stress is plotted against wall-normal height normalised by the roughness wavelength. It appears that the coherent stresses, which is commonly interpreted as the roughness sublayer, reduced to zero at wall-normal heights above half of the roughness wavelength. Cases 60,212 and 60,283, which have large \(ES \) values, do not collapse well onto the other rough wall profiles because the actual virtual origin for these cases have shifted (\(y^+ \neq 0 \) at \(R_0 \)). It is expected that the virtual origin of the rough surface resides closer to the crest of the roughness with increasing \(ES \), as it asymptotes to a smooth wall with the virtual origin shifted to the crest of the roughness [12]. Correcting the wall-normal location by setting the virtual origin to be the location where \(U^+ = 2 \) in the inset of figure 3, a more convincing collapse in the profiles are observed.

Streamwise Velocity Contours

The time-averaged streamwise velocity contour overlaid with the line contour of the time-averaged streamwise vorticity is illustrated in figure 4. The time-averaged streamwise vorticity shows the occurrence of counter rotating secondary flows which predominantly occurs within the roughness canopy. As the roughness wavelength increases, these secondary flows become larger both in the spanwise and wall-normal direction. The effects of the secondary flows are noticeable from the azimuthal variation of the time-averaged streamwise velocity contours, especially for case 60,848. We observe that high-speed fluid is transported from the outer-region to the inner region along streamwise planes which are locally smooth (plane \(B \)) and conversely low-speed fluid is ejected to the outer-region of the flow along streamwise planes which are locally rough (plane \(A \)). These are contrary to the high- and low-momentum paths (HMP and LMP) observed by [14] which occurred along the rough and smooth regions respectively.

Kevin et al. [11], who conducted experiments on directional riblets also reported the observation of large albeit weak secondary flows. They concluded that these secondary flows in the time-averaged velocity field are not persistent at all instantaneous times and might be an artefact arising from superpositions of much stronger instantaneous turbulent events enhanced...
by the riblets. A similar analysis has been conducted here to investigate the persistence of the secondary motions. Conditional averaging on 832 independent instances was conducted to determine the probability of the occurrence of downward flows towards the walls along plane \(B \) (HMP) and upward flows from the wall along plane \(A \) (LMP). The instantaneous wall-normal velocity is averaged in window between \(100 < y^+ < 200 \) and a width of \(0.064 \lambda \) at every quarter of the roughness wavelength (at LMPs and HMPs). The results in figure 5 show that this flow configuration only occurs \(\approx 18.5\% \) and \(\approx 20.3\% \) of the instances along plane \(I \) and plane \(H \) respectively compared to \(\approx 13\% \) in an equivalent smooth wall. This value is lower than the \(27.8\% \) reported by [11] for their converging-diverging riblets. Nevertheless, this analysis shows that the secondary motions observed in the time-averaged field are not an accurate representation of the vigorous turbulent events enhanced by the roughness which may occur in short time-scales.

Conclusions

DNS of a turbulent flow in a pipe with sinusoidal roughness is conducted where the roughness spans from the wavy/undulating roughness to the dense, closely packed roughness. The triple decomposition is used to separate the coherent (or dispersive) fluctuations due to the roughness elements, from the turbulent fluctuations. The wall-normal extent of the coherent fluctuations, which typically defines the roughness sublayer, is a clear function of the roughness spanwise wavelength. These coherent fluctuations are due to the occurrence of secondary motions when analysing the time-averaged velocity field. For the case with the largest wavelength, which resembles a wavy surface, the secondary flows occupy more than half of the pipe’s boundary layer. The occurrence of secondary flows for this homogeneous type roughness is consistent with the findings in the literature for streamwise aligned heterogeneous roughness.
[17, 18, 19, 13]. Conditional averaging for the instantaneous flow field shows that these time-averaged secondary motions are artefacts of much stronger instantaneous events that are enhanced by the spatial distribution of the roughness elements [11].

![Figure 5: Conditional average of the streamwise velocity along the unwrapped cross-sectional (a) plane I (rough) and (b) plane II (smooth). The percentage represents the occurrence of this flow configuration. The red box illustrates the window $(0.118 < y/\lambda < 0.236$ and $\Delta\theta/\lambda = 0.064)$ where the wall-normal velocity is averaged.](image)

Acknowledgements

The authors would like to gratefully thank the Australian Research Council for the financial support and the Victorian Life Science Computational Institute (VLSCI) for providing the computational time.

References

