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Abstract

Two-phase slug flow is a common phenomenon observed in
oil and gas wells and pipelines. Mechanistic modelling ap-
proaches used in industry for design and monitoring rely on
closure relations (e.g. Taylor bubble rise velocity in a stag-
nant fluid) to approximate phase interactions. In this work, the
phase-field lattice Boltzmann method (PFLBM) originally pro-
posed by Fakhari et al. [4] and extended to three dimensions
by Mitchell et al. [10] is employed to investigate the valid-
ity of some of these closure relations. The PFLBM solves the
conservative phase-field equation to capture the interfacial dy-
namics while resolving the hydrodynamics through a velocity-
evolution LBM. To assist with model stability at high den-
sity and viscosity ratios, a weighted-multiple-relaxation-time
(WMRT) operator is incorporated in the hydrodynamic scheme.
The model is first validated for Taylor bubble transport in verti-
cal pipes at a range of Morton (Mo) and Eötvös (Eo) numbers.
The effect of inclination in tubular pipes is then investigated and
compared with existing correlations in the literature. The study
concludes with an assessment of the Taylor bubble rise velocity
in annular piping with comparison to experimental results.

Themes: Computational fluid dynamics; Multiphase and
particle-laden flows; Pipe flows.

Introduction

Multiphase flows are prevalent in a number of industrial, natural
and scientifically-relevant problems. The complexities of such
flows present a number of challenges in the oil and gas indus-
try, where two- and three-phase confined flows are common-
place. The development of characteristic interface topologies,
referred to as flow regimes, is often observed in the transport
of hydrocarbons from subsurface reservoirs. In order to accu-
rately predict system performance and then adequately design
and operate fluid handling and pressure management systems,
it is important to understand both when a regime will occur and
the associated dynamics. A comprehensive review of the rele-
vant flow regimes can be found in Wu et al. [15].

When relating multiphase flows to general formulae, it is im-
portant to assign relevant dimensionless numbers. In situa-
tions where the density and viscosity ratios are high, one can
relate the propagation of a Taylor bubble through five non-
dimensional groups [8]. The numbers commonly used for this
include the Froude number, Fr = uT B/

√
gD, the Eötvös num-

ber, Eo = gρD2/σ, the Morton number, Mo = gµ4/ρσ3, the
liquid Reynolds number, Re = ρulD/µ, and the pipe angle, θ.
In this work, we also refer to the inverse viscosity number,
Nf = ρ

√
gD3/µ.

Governing equations

In this work, a one-fluid approach is used to simulate Taylor
bubble dynamics through various piping configurations. This

means that the fluid behaviour is captured through a single set
of continuity relations with variable material properties. The
material properties, namely density and viscosity, are described
by an order parameter (commonly related to the fluid volume
fraction) which is propagated throughout the flow via an in-
terface tracking method (ITM). Various ITMs exist in the lit-
erature, including the Volume-of-Fluid and Level-Set methods,
however in this study the conservative phase field model (PFM)
is used. This particular PFM was proposed as a modified Allen-
Cahn equation, before being formulated in a conservative form.
Geier et al. [5] presented the model within the lattice Boltz-
mann framework and were able to show mass conservation and
robust model behaviour over a range of test cases. The order pa-
rameter, φ, takes two extreme values in the low density, φL, and
high density, φH, phases. The explicit location of the interface
is then taken to be the level set curved defined by the average
of these two values, φ = φ0 = 0.5(φL +φH). The equation then
governing the dynamics of this parameter field is given by Chiu
and Lin [2] as,

∂tφ+∇∇∇ ·φuuu = ∇∇∇ ·M
(

∇∇∇φ− ∇∇∇φ

|∇∇∇φ|
1−4(φ−φ0)

2

ξ

)
, (1)

where uuu is the velocity vector, M is the mobility, and ξ describes
the diffuse interfacial width. It is assumed that the profile of φ

over the diffuse interface varies as,

φ(xxx) = φ0±
φH−φL

2
tanh

(
2|xxx− xxx0|

ξ

)
, (2)

where xxx000 is the coordinate position indicating the interface lo-
cation. The density, ρ, and dynamic viscosity, µ, are recovered
by a simple linear interpolation using φ.

The hydrodynamics of the system is governed through the in-
compressible continuity and momentum equations given by,

∂tρ+∇∇∇ ·ρuuu = 0, (3)
ρ(∂tuuu+uuu ·∇∇∇uuu) =−∇∇∇p+∇∇∇ ·Π+ρggg+Fs, (4)

where p is the hydrodynamic pressure, Π = µ
[
∇∇∇uuu+(∇∇∇uuu)T ] is

the viscous stress tensor, ggg is the gravitational acceleration and
Fs = µφ∇∇∇φ is the force associated with the surface tension, with,

µφ = 4β(φ−φL)(φ−φH)(φ−φ0)−κ∇
2
φ. (5)

Here, µφ is the chemical potential and relations to the sur-
face tension, σ, and interfacial width are introduced through
β = 12σ/ξ and κ = 3σξ/2.

Lattice Boltzmann formulation

The discretisation of the governing equations is conducted as
per the work of Fakhari et al. [4] and Mitchell et al. [10],



to which the reader is referred for detailed descriptions of
the model. Equation 1 is resolved in the lattice Boltzmann
framework using a single-relaxation-time collision operator on
a D3Q15 lattice. The explicit update equation for this is,

hi(xxx+ ccciδt, t +δt) = hi(xxx, t)−
hi(xxx, t)− h̄eq

i (xxx, t)
τφ +1/2

+Fφ

i (xxx, t),

(6)

where τφ = M/c2
s is the phase-field relaxation time and cs =

c/
√

3 is the speed of sound of the system. The forcing term is
then given by,

Fφ

i (xxx, t) = δt
[1−4(φ−φ0)

2]

ξ
wiccci ·

∇∇∇φ

|∇∇∇φ|
, (7)

where ccci is the discrete velocity set and wi represents the
weights of the lattice. The equilibrium distribution used in the
update equation is shifted by the forcing term,

h̄eq
i (xxx, t) = φwi

(
1+

ccci ·uuu
c2

s
+

(ccci ·uuu)2

2c4
s
− uuu ·uuu

2c2
s

)
− 1

2
Fφ

i . (8)

To relate the interface-tracking distribution function, hi, to the
phase-field variable, its zeroth moment, φ = ∑i hi, is taken after
the streaming step.

To resolve the hydrodynamics of the system, the weighted-
multiple-relaxation-time collision operator is used on a D3Q27
lattice. The lattice Boltzmann equation as defined in Mitchell et
al. [10] is,

gi(xxx+ ccciδt, t +δt) =gi(xxx, t)

−M−1ŜM
[
gi(xxx, t)− ḡeq

i (xxx, t)
]
+Fi(x, t),

(9)

where the shifted equilibrium distribution is,

ḡeq
i (xxx, t) = wi

[
p

ρc2
s
+

(
ccci ·uuu
c2

s
+

(ccci ·uuu)2

2c4
s
− uuu ·uuu

2c2
s

)]
− 1

2
Fi.

(10)

Here, it is noted that the initialisation process involves set-
ting the domain equal to the equilibrium distribution functions.
The collision matrix, M, and relaxation matrix, Ŝ, are listed in
Mitchell et al. [10]. Here, this work improves the efficiency
of the algorithm by incorporating the forcing term within mo-
mentum space (i.e. prior to applying the M−1 transformation).
The procedure for doing this involves first calculating the total
volumetric force, F = ρggg+Fs +Fp +Fµ, where Fp and Fµ are
introduced to recover the pressure and viscous terms within the
Navier-Stokes equation. The pressure force is given by,

Fp =−
p
ρ
(ρH−ρL)∇∇∇φ, (11)

and the viscous force as [4],

Fµ = ν(ρH−ρL)
[
∇∇∇uuu+(∇∇∇uuu)T

]
·∇∇∇φ, (12)

wherein the derivatives of the order parameter are recovered
with isotropic central differences. The velocity derivatives can
be obtained from the second moment of the hydrodynamic dis-
tribution function,

Fµ,α =−ν(ρH−ρL)

c2
s

[
∑

i
ci,αci,β ∑

j
(M−1ŜM)i, j(gi−geq

i )

]
∂βφ.

(13)

Therefore, defining the moments, mmm = Mggg, and the forcing
term, Fm = ρ−1(0,Fx,Fy,Fz,0, . . . ,0), such that it acts on the
correct moments, the update can be performed as,

gi(xxx+ ccciδt, t +δt) = M−1 [mi− (mi−meq
i +0.5Fm,i)Ŝi,i +Fm,i

]
.

(14)

The simplifications that arise from performing the update in this
form was found to approximately halve the required computa-
tion time, which we have observed to scale while the compute
rather than communication is the limiting factor. The macro-
scopic properties recovered from the hydrodynamic distribu-
tion function, gi, are the pressure, p = ρc2

s ∑i gi, and velocity,
uuu = ∑i giccci +F/2ρ.

Taylor bubble tubular simulations

To demostrate the robustness of the described lattice Boltzmann
model, a number of cases from a numerical study conducted in
the finite volume software TransAT® [8] were analysed. Table
1 indicates the test matrix, where cases are defined based on
their Mo, Eo and Nf numbers. The experimental fluid properties
were not captured in the simulations. Instead, a density and
dynamic viscosity ratio of 1000 was defined, enforcing ρL� ρH

and µL � µH. The discretised domain consisted of 128 lattice
cells across the tube diameter, D, and the length of the tube was
set to 10D. The bounceback method was used to create no-slip
pipe walls as well as to close the top and bottom of the domain.
In the simulations, a reference time, t0 =

√
D/g = 12000 lattice

units, is defined such that t∗ = t/t0 is the dimensionless time.
Simulations are run for 10t∗ at which time the Taylor bubbles
have progressed towards a steady-state nose and film profile as
well as a macroscopic rise velocity.

Table 1 displays the results for the bubble Froude number and
the dimensionless developed film thickness, h∗ = h/R, where
h is the distance of the interface from the tube wall and R is
the tube radius. Four of the eight test cases were compared
with experimentally obtained rise velocities as well as the work
of Lizarraga-Garcia et al. [8], which developed an advanced,
unified correlation for Taylor bubble rise that agreed well with
a large database of results. This made it a reputable source for
comparison. Case C comes from the work of Shosho and Ryan
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Figure 1: Comparison of the (a) Froude number and (b) di-
mensionless film thickness for the simulated Taylor bubble with
those expected from the literature. The solid line indicates a
perfect match with literature and dashed lines show ±5%.



Table 1: Summary of Taylor bubble rise and film thickness over a range of Eo and Nf numbers in comparison with literature and the
finite volume method (FVM) simulations of Lizarraga-Garcia et al. [8]. Experimental results are highlighted with an asterisk (∗).

Case Mo Eo Nf Fr (lit.) Fr (FVM) Fr (LBM) h∗ (lit.) h∗ (FVM) h∗ (LBM)
A 0.328 76.5 34.2 0.210 0.212 0.209 0.295 0.288 0.289
B 4.03e-3 187 201 0.324 0.306 0.322 0.198 0.189 0.197
C 1.17e-4 38.6 149 0.276∗ 0.295 0.292 0.212 0.234 0.209
D 1.52e-2 98.4 89.0 0.303∗ 0.291 0.293 0.246∗ 0.238 0.242
E 1.50e-3 9.88 82.3 0.0411 0.0458 0.048 0.192 0.189 0.194
F 4.75e-2 192 111 0.336∗ 0.322 0.308 0.235∗ 0.218 0.230
G 8.38 747 84.0 0.289∗ 0.299 0.301 0.250 0.261 0.247
H 8.38 181 29.0 0.199 0.216 0.206 0.306 0.295 0.301

[13]; case D from Bugg and Saad [1]; case F from Nogueira et
al. [11]; and case G from Jeyachandra et al. [7], whereas the
remaining cases were compared with the literature correlation
from Viana et al. [14]. In terms of the developed film thickness,
two experimental cases reported values for this (Cases D and F),
while the remainder were compared to the Cubic Brown model
proposed by Llewellin et al. [9].

The results from Table 1 are displayed graphically in Figure 1.
These plots indicate the deviation of the simulation results, us-
ing both the LBM described here and the finite volume method
[8], from results reported in the literature. To quantify this, the
average absolute difference was calculated in which the phase
field LBM was able to capture the rise behaviour of the Taylor
bubble, as indicated by the Froude number, to approximately
±5.4%. The dimensionless film thickness was found to be on
average ±1.4% of the expected value. The simulations con-
ducted here indicate both the robustness of the multiphase lat-
tice Boltzmann model, as well as the accuracy of correlations
existing for vertical tubes.

Effect of pipe inclination

To determine the effect of pipe inclination, the test cases con-
ducted by Lizarraga-Garcia et al. [8] were studied at a wider
range of rotations. Here, Cases A and G were analysed at in-
clinations of θ = (5,15,30,45, . . . ,90) degrees from horizontal.
The present results were compared to a range of correlations
[6, 7, 12]. In addition, Case G was also compared with experi-
mental data [7].

Figure 2 shows excellent agreement between the LBM test con-
ducted in this study and the available range of numerical results
[8]. This is evident over a large range of angles in Figure 2. In
Figure 2b it can be seen that the LBM results very accurately
capture the experimental work of Jeyachandra et al. [7]. From
these findings, it is evident that the existing correlations in the
literature are inadequate to capture the rise velocity of Taylor
bubbles over both a range of inclination angles and fluid proper-
ties. Arguably, the most accuate correlation overall, as pointed
out by [8], was that of Hasan et al. [6]. It is noted that the
original correlation has been modified slightly, namely from a
constant value of Frv

d = 0.35 to,

Frd = Frv
d

√
sin(θ)(1+ cos(θ))1.2, (15)

Frv
d =

0.34
(1+3805/Eo3.06)0.58

. (16)

Equation 16 was proposed by Viana et al. [14] to account for
the effects of surface tension and viscous forces.

Annular pipe configuration

Having shown the capability and robustness of the presented
phase field LBM, a preliminary study on the flow of Taylor

bubbles in annular pipes was conducted. This was performed
in comparison with the experimental work of Das et al. [3].
Here the equivalent Froude number for the bubble is defined
based on the summation of the inner, d1, and outer, d2, diam-
eters, Fra = UT B/

√
g(d1 +d2). Simulations were conducted

with the same resolution as the tubular flow cases, however, the
reference time was reduced to t0 = 5000 in order to lower com-
putational run time. The sensitivity of this parameter is still to
be investigated. The reported experimental work was conducted
with air and water as the working fluids, as such the density ra-
tio was set to 828 and the dynamic viscosity ratio to 55.

Table 2 provides a summary of the experimental geometry, the
relevant dimensionless numbers as well as the rise velocity re-
sults. The predicted Fr number was that defined by the group
of Das et al. [3], where it is seen to very accurately capture the
measurements conducted by the same group. The results ob-
tained in the current work show deviation from these measured
values. However, the level of variance is still a considerable re-
duction on the deviation Das et al. [3] reported with correlations
from other authors.

Table 2: Summary of annular experimental geometry and flow
cases from Das et al. [3]. The error presented is variation be-
tween measured results and lattice Boltzmann simulations.

Case d1 [m] d2 [m] Eo Mo
1 0.0508 0.0254 8.659 2.559e-14
2 0.0381 0.0127 8.659 2.559e-14
3 0.0254 0.0127 2.165 2.559e-14
Case Fr (meas.) Fr (pred.) Fr (LBM) Error (%)
1 0.334 0.324 0.317 5.090
2 0.338 0.326 0.292 13.609
3 0.277 0.327 0.225 18.773

Figure 3 shows the capability of the model to capture the ex-
pected, non-axisymmetric shape profile of a Taylor bubble in
an annulus. In the simulation, the bubble is initialised as an
elongated, axisymmetric torus but naturally forms the minimal
drag shape as observed in the figure.

Conclusions

The phase field lattice Boltzmann model has been used to anal-
yse Taylor bubbles over an array of dimensionless parameters,
for a range of inclination angles as well as in annular piping
configurations. Where available, the terminal bubble velocity
was shown to agree well with previous correlations, numerical
data and experimental results. Looking forward, the dynamics
of Taylor bubbles in annular piping geometries will be analysed.
Additionally, a numerical database is being further generated to
relate important dimensionless parameters to rise velocities and
liquid film thicknesses to improve the reliability of mechanistic
pressure gradient and liquid hold-up predictions.
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Figure 2: Froude number displayed as a function of inclination angle for test cases (a) A and (b) G. Case A is shown in comparison to
existing correlations, while Case G is also compared with the experimental work of Jeyachandra et al. [7].

Figure 3: The vertical propagation of a Taylor bubble in an an-
nular geometry. The contour indicates dimensionless velocity.
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