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Abstract

In this paper, direct numerical simulation (DNS) is performed

to investigate the effects of pulsatile streamwise pressure gra-

dient on turbulent smooth cylindrical pipe flows at a friction

Reynolds number of 180 and very-high pulsation frequencies.

The present study focuses on phase-averaged Reynolds shear

stress and quadrant analysis including probability density func-

tion (PDF) and joint probability density function (JPDF). One

turbulent pipe flow with non-pulsatile condition and the other

with a very high pulsating frequency (ω+ = 0.043) are numeri-

cally experimented respectively, where strong dependence with

pulsation is observed on phase-averaged Reynolds shear stress.

The observation is mainly attributed to an intensive phase de-

pendence of the low-speed turbulence structures and the ejec-

tion events in the second quadrant of the Reynolds shear stress.

Introduction

Pulsatile pipe flow is widely encountered in physical systems

and engineering applications. The flow configuration can be

described as a steady flow field superimposed with harmonic

oscillations [5, 10, 12]. For pulsatile fully-developed turbulent

pipe flows, the flow structures are affected by the amplitude and

frequency of the superimposed velocity pulsation [6]. In terms

of the amplitude of the velocity pulsation, the flow condition

can be classified into wave- and current-dominated turbulent

pipe flows, based on the ratio of the centre-line velocity oscil-

lation to the time-averaged centre-line velocity. In the current-

dominated flows, which is the focus of this paper, the ratio is

less than unity. The flow characteristics are weakly dependent

on the pulsation amplitude while showing high dependence on

the pulsation frequency ω [8].

Recent research observed that the pulsation frequency has a

strong effect on how far the vorticity generated from the pul-

satile viscous wave at the wall could penetrate into the flow

[8]. Tardu et al. [9] defined this frequency in a form of

ω+ = ων/u2
τ , where uτ is the time-averaged friction velocity,

ν is the kinematic viscosity, and intervals of 0.02 < ω+ < 0.04

and ω+ > 0.04 are categorised high and very-high frequency

regimes, respectively. For high and very-high frequencies, the

propagation of that vorticity is confined in the viscous sub-

layer [4]. As a result, the turbulence quantities will be weakly

dependent on the pulsation [6]. However, throughout cur-

rent published papers, the difference between high and very-

high frequency regimes is still ambiguous and remains to be

clarified. Brereton & Hwang [1] conducted a range of ex-

periments with ω+ = 0.01,0.02,0.04 and 0.08, and reported

that the time-averaged pulsating streamwise mean velocity pro-

files and phase-averaged streamwise turbulence intensities at

those frequencies were barely distinguishable. More recently,

Papadopoulos & Vouros [6] systematically analysed pulsatile

flows in high and very-high frequency regimes and observed

that phase-averaged turbulence intensities asymptotically ap-

proached phase independence and showed no obvious differ-

ence to classify high and very-high pulsation frequencies. How-

ever, these previous studies focused on the time- and phase-

averaged mean velocity profiles and phase-averaged turbulence

intensities. In this paper, an analysis is carried out on the

Reynolds shear stress to provide a fundamental explanation for

the effects of pulsation on turbulence characteristics.

Aims

Our objective is to complement previous studies by analysing

the effects of pulsatile flows on the phase-averaged Reynolds

shear stress and the instantaneous turbulence structures. The

following data will be presented: (i) Phase-averaged turbulence

statistics corresponding to Reynolds shear stress; (ii) High-

order statistics including quadrant analysis and probability den-

sity functions; (iii) The instantaneous turbulence structures.

Simulation Setup and Validation

Pulsatile flow is achieved by prescribing a time-dependent axial

pressure gradient of the form

Π(t) = Π0 (1+Asin(ωt)) (1)

where Π0 is the constant mean streamwise pressure gradient

and A and ω denote the amplitude and frequency, respectively.

The oscillatory component of the pulsatile pressure gradient is

defined here as Π̃(t) = Π0Asin(ωt).

For pulsating turbulent pipe flows, the resulting instantaneous

velocity field, u, can be decomposed as [7]

u(x, t) = ū(r)+ ũ(r,φ(t))+u
′(x, t) (2)

where ū is the global mean velocity, ũ is the zero-mean periodic

component and u
′ is the stochastic fluctuation. Temporal phase

is defined here as φ(t) = 2π(t/T mod 1), where T = 2π/ω is

the pulsation period.

Aligned along cylindrical coordinate where x = (r,θ,x), the

global-mean and phase-averaging operators can be written as,

ū(r) =
1

2πLTtotal

∫ Ttotal

0

∫ 2π

0

∫ L

0
u(x, t)dxdθdt (3)

〈u〉(r,φ(t)) =
1

2πLN

N−1

∑
n=0

∫ 2π

0

∫ L

0
u(x, t +nT )dxdθ (4)

where Ttotal = NT is the total sampling period, N is the num-

ber of complete periods and L is the pipe length. Throughout

this document, inner-scaled variables are denoted by a super-

script “+”, e.g. ω+ = ων/u2
τ . The centreline velocity ratio is

defined as auc = (max〈u〉cl −ucl)/ucl and is held constant at

0.63. The friction Reynolds number is defined as Reτ = uτR/ν
and held constant at 180. The Reynolds shear stress is defined

as 〈u′xu′r〉= 〈(ux −〈ux〉)(ur −〈ur〉)〉.

To aid the analysis of results, it is useful to introduce the concept

of acceleration and deceleration based on the behaviour of the

phase-averaged axial bulk velocity, 〈ub〉. The variation of 〈ub〉
is unit-normalised and shown in Figure 1, along with the oscil-

latory axial pressure gradient. Accelerating phases are defined

on the range 0 < φ < π, whereas decelerating phases are defined



on the range π< φ < 2π. It is found that for the frequency under

consideration, the phase-averaged centre-line velocity 〈uc〉 and

phase-averaged bulk velocity 〈ub〉 align on the same phase.
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Figure 1: Schematic diagram of accelerating and decelerat-

ing phases. Phase dependence of oscillatory pressure gradient

component Π̃(t) ( ), and phase-averaged axial bulk velocity

〈ub〉 at ω+ = 0.043 ( ) are both unit-normalised and separated

into acceleration ր and deceleration ց. Four specific phases

φ = {0,π/2,π,3π/2} are presented {(◦) ,(×) ,(�) ,(+)}.

In total, two numerical experiments were conducted, including

one pulsatile case with forcing frequency ω+ = 0.043 and a

non-pulsatile case for reference. Time integration was achieved

using the PISO method [2] and based on the OpenFOAM library

[3]. Spatial discretisation was based on a second-order accurate

finite volume method. Impermeable no-slip boundary condi-

tions were enforced on velocity, whereas Neumann boundary

conditions were used for pressure. Periodic boundary condi-

tions were enforced in the axial direction. A mesh consisting of

hexahedra elements was used to resolve the pipe geometry with

a pipe length of 2πD, where the grid resolution at the wall and

centreline are ∆+
r ≈ 0.2,4.71 and ∆+

x ≈ 5.89, respectively.

In order to validate the accuracy of the current computational

setup, recent results from Papadopoulos & Vouros [6] were re-

produced. The phase-averaged mean velocity profile is shown

in Figure 2 and the turbulence intensity profile is illustrated in

Figure 3 at four different phases at ω+ = 0.043. Overall, good

agreement between the two data sets is observed at all wall-

normal locations for each phase.
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Figure 2: Phase-averaged mean velocity profile at four separate

phases φ = {0( ) ,π/2( ) ,π( ) ,3π/2( )} along with Pa-

padopoulos & Vouros [6] at each corresponding phase (refer to

the symbols in Figure 1) and a non-pulsatile mean velocity pro-

file ( ).

Results

As was previously stated, the majority of past studies [6] have

focused on phase-averaged profiles of axial velocity (Figure 2)

and turbulence intensity (Figure 3). In order to complement

previous work, in this study attention will be directed towards

high-order phase-averaged turbulence statistics including: (i)

Reynolds shear stress (RSS); (ii) quadrant decomposition of

RSS and (iii) the joint probability density function (JPDF) of

RSS. In addition, the instantaneous turbulence structures will be

analysed. Herein, all results correspond to a forcing frequency

of ω+ = 0.043 and a friction Reynolds number of Reτ = 180.
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Figure 3: Phase-averaged axial turbulence intensity at four

separate phases φ = {0( ) ,π/2( ) ,π( ) ,3π/2( )} along

with Papadopoulos & Vouros [6] at each corresponding phase

(refer to the symbols in Figure 1) and a non-pulsatile axial tur-

bulence intensity ( ).
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Figure 4: Phase-averaged Reynolds shear stress at eight sep-

arate phases φ = {0( ) ,π/4( ) ,π/2( ) ,3π/4( )}, and

{π( ) ,5π/4( ) ,3π/2( ) ,7π/4( )}. The most intensive

modulation occurs at y+ = 30 ( ). Inset: Phase dependence

of phase-averaged Reynolds shear stress 〈u′xu′r〉 ( ) at y+ = 30

and phase-averaged axial bulk velocity 〈ub〉 ( ).

Phase-averaged Reynolds Shear Stress

Profiles of the phase-averaged RSS, 〈u′xu′r〉, are shown in Fig-

ure 4. Unlike the phase-averaged mean velocity (Figure 2), the

profiles of RSS exhibit two distinct behaviours. At phases on

the interval 0 < φ < π, where the bulk flow is accelerating, the

peak magnitude of 〈u′xu′r〉 decreases and moves towards the pipe



centreline. On the contrary, the peak magnitude of 〈u′xu′r〉 in-

creases and moves towards the wall as the bulk flow decelerates

— corresponding to the phases on the interval π < φ < 2π. The

strongest variation of 〈u′xu′r〉 with respect to phase is observed at

y+ = 30, which indicates the sensitivity of the near-wall cycle

in this region.

In order to investigate the near-wall events associated with

the behaviour of 〈u′xu′r〉 (Figure 4), a quadrant analysis

was conducted. Following Wallace et al. [11], 〈u′xu′r〉 is

decomposed into four quadrants: (i) outward interactions

Q1 (u
′
x > 0,u′r > 0); (ii) ejection events Q2 (u

′
x < 0,u′r > 0); (iii)

inward interactions Q3 (u
′
x < 0,u′r < 0) and (iv) sweep events

Q4 (u
′
x > 0,u′r < 0). Out of the four quadrants, Q2 events ex-

hibit the greatest sensitivity with respect to phase, and as a re-

sult, the following analysis focuses on the phase-averaged sig-

nature of ejection events. The joint probability density functions

(JPDF) of Q2 events at y+ = 30 are shown in Figure 5. As the

bulk flow accelerates, the JPDF becomes narrower, indicating

that it is less likely to observe high-amplitude low-probability

axial velocity fluctuations. On the other hand, as the bulk flow

decelerates, the JPDF widens and leads to an increased proba-

bility of high-amplitude events. Relative to axial velocity fluc-

tuations, the JPDF of wall-normal velocity fluctuation u′r shows

a weak dependence on phase. Therefore, the remaining analysis

focuses on further statistics of streamwise velocity fluctuations.
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Figure 5: Quadrant analysis of JPDF weighted by u′x and u′r in

Q2 at each phase of 〈ub〉, φ (•), in an entire period (refer to the

inset ( )) of the harmonic pressure gradient at y+ = 30.

Instantaneous Turbulence Structures

The probability density functions (PDF) of u′x at y+ = 30 under

pulsatile and non-pulsatile conditions are compared in Figure

6. Overall, the pulsatile pressure gradient has a strong effect on

the distribution of negative axial velocity fluctuations (u′x < 0)

— an observation consistent with the results shown previously

in Figure 5. In contrast, the phase dependence of positive axial

velocity fluctuations (u′x > 0) is far weaker. As the bulk flow

accelerates, the tails of the PDF of u′x become shorter, indicating

that the probability of high-magnitude fluctuations decreases. In

contrast, both tails lengthen throughout the deceleration of the

bulk flow.

The instantaneous turbulence structures in Figure 6 (right col-

umn) correspond to the PDF of u′x at each phase. As the bulk

flow is increasing (0 < φ < π), narrowing P
(
ũ′x
)

on both tails

indicates a reduction in the quantity of both low-speed streaks

(LSS) and high-speed streaks (HSS), which implies that the dif-

ference between the turbulence structure scales is narrowing.

On the contrary, as the bulk flow is decreasing (π < φ < 2π),

lengthening P
(
ũ′x
)

on both tails indicates an increase in the

quantity of both LSS and HSS.

Conclusions

The current investigation reveals that at the threshold of very-

high-frequency pulsation, Reynolds shear stress still shows a

strong dependence on the pulsatile forcing frequency, where the

dominant effect refers to the ejection events in the second quad-

rant of Reynolds shear stress and low-speed turbulence struc-

tures. Further systematical investigations on pulsatile turbulent

pipe flow structures will be continued. Spectral analysis will

be conducted in order to analyse the effects of pulsation on all

turbulence length scales.

Themes

Turbulence, Boundary layers, Computaional fluid dynamics.
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Figure 6: Left column: Comparison of the PDF of both pulsatile ( ) and non-pulsatile ( ) u′x normalised by the standard deviation

of non-pulsatile pipe flow σu′x
at each phase of 〈ub〉 (refer to the inset) (•) in a entire period ( ) of the harmonic pressure gradient

at y+ = 30. P
(
ũ′x
)

and P(u′x) respectively denote the PDF of the pulsatile and non-pulsatile streamwise velocity fluctuations. Right

column: The instantaneous u′x/σu′x
streaks referring to each reference phase of the PDF figures in the left column.


