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Abstract 

The size-dependent bifurcation behaviour of a fluid-conveying 

microtube taking into account the effect of internal energy loss 

is studied in this paper. It is assumed that the viscoelastic 

microscale tube is externally excited by a transverse harmonic 

force. In addition, the viscoelastic microscale system is 

surrounded by a nonlinear spring bed. To take into account the 

influence of the internal energy loss on the size-dependent 

bifurcation behaviour, the Kelvin-Voigt scheme of 

viscoelasticity is employed. The modified couple stress theory 

(MCST), as a size-dependent theory, and the Hamilton 

principle, as an energy/work law, are utilised for deriving the 

governing coupled equations for the bifurcation response of the 

viscoelastic fluid-conveying microtube. The displacement 

along the transverse direction as well as the axial displacement 

are incorporated into the size-dependent continuum model, 

leading to an accurate coupled continuum-based model. The 

Galerkin weighted-residual scheme, as a decomposition 

approach, is then applied to the derived nonlinear differential 

equations. Clamped-clamped boundary conditions are taken 

into consideration for extracting numerical results. The size-

dependent bifurcation behaviour of the fluid-conveying 

viscoelastic microtube is finally predicted by a numerical time-

integration technique. 

Introduction  

Fluid-structure interactions at microscale levels have recently 

been at the centre of attention of many scientific communities 

owing to the fact that some useful microscale devices such as 

microfluidics and microscale biosensors work based on these 

interactions [1, 2]. It is important to improve the knowledge 

level on the mechanical behaviour such as the bifurcation of 

fluid-conveying microscale structures under various external 

loads since in order to design a microscale system with fluid-

structure interactions, the proper prediction of its time-

dependent deformation is required.  

Some modified elasticity models have been introduced to 

capture the size influence on the dynamic response of fluid-

conveying small-scale structures. The most popular ones are the 

nonlocal theory [3-7], the couple stress model [8-10] and the 

nonlocal strain gradient elasticity [11, 12]. In this analysis, the 

modified couple stress theory (MCST) is applied since it is able 

to capture the size influence at microscale levels. 

Although the dynamic response of fluid-conveying macroscale 

structures have been widely studied in the literature [13, 14], 

the number of research investigations on the mechanics of 

small-scale structures conveying flowing fluid is limited. Some 

of the most relevant investigations are concisely explained in 

the following. Wang [15] explored the linear scale-dependent 

oscillation of tubes containing fluid flow at microscale levels; 

he applied the MCST to capture the size influence. Kural and 

Özkaya [16] also studied the effect of an elastic foundation on 

the vibration of microscale beams conveying fluid; they utilised 

a perturbation technique to present an approximate solution. In 

addition, Dehrouyeh-Semnani et al. [17] examined the 

vibrational behaviour of micropipes containing fluid flow via 

an Euler–Bernoulli model together with the MCST; they took 

into consideration von Kármán's geometrical nonlinearity in the 

formulation. In another paper, Hosseini and Bahaadini [18] 

developed a scale-dependent theoretical model for analysing 

the stability of cantilever pipes containing fluid flow at 

microscale levels via a modified strain gradient model. 

Furthermore, a parametric size-dependent investigation was 

presented in the literature on the flow-induced time-dependent 

deformation of pipes with clamped-free ends [19]. Tang et al. 

[20] also investigated the large amplitude vibrational behaviour 

of curved microscale tube containing fluid flow via the MST. 

More lately, the effects of thermal stresses on the forced 

vibrational response of carbon nanotubes have been explored 

by Askari and Esmailzadeh [21]. Moreover, a nonlinear 

analysis has been reported on the flow-induced vibrational 

response of piezoelectric nanoscale tubes incorporating the 

influence of large deformations [22].  

In this analysis, a scale-dependent continuum model is 

proposed to examine the bifurcation behaviour of a fluid-

conveying microtube resting on a nonlinear elastic medium in 

the super critical regime. The influences of the geometrical 

nonlinearity and the internal energy loss as well as the size 

influences are incorporated in the continuum modelling and the 

solution method. It is assumed that the microtube is subject to 

transverse harmonic loading. Using the Kelvin-Voigt scheme, 

MCST and a Hamilton approach, the differential equations of 

motion are derived. Both two types of displacement 

components (i.e. the axial and transvers ones) are 

simultaneously considered in the scale-dependent nonlinear 

modelling. Galerkin’s procedure was implemented in order to 

obtain a set of ordinary differential equations from the coupled 

partial differential equations of the microscale system. Finally, 

to solve the obtained ordinary differential equations, a 

continuation scheme is applied. Numerical results are presented 

for clamped-clamped microtubes in the supercritical regime.      

Scale-dependent formulation 

Figure 1 illustrates the schematic diagram of a microtube 

conveying fluid flow resting on a nonlinear elastic medium. The 

small-scale tube is subject to an excitation force given by 

   cosF x t  where F denotes the forcing amplitude, and   

is the excitation frequency. The length of the microtube and the 

velocity of the fluid flow are denoted by L and Uf, respectively. 

The plug flow assumption is considered as the boundary layer 

thickness is negligible. Moreover, Di and D are respectively the 

inner and outer diameters of the microscale tube.   

Based on von Kármán's geometrical nonlinearity and the Euler-

Bernoulli model of beams, one can write 
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in which  xx
, ŵ , û  and   represent the strain, transverse 

deflection, axial displacement and tube rotation, respectively. 

Taking into account the internal loss using Kelvin-Voigt 

viscoelasticity, the stress-strain relation is expressed as 
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In the above relations (i.e. Eq. (2)),  xx
,  e

 and  v
 are 

respectively the total, elastic and viscoelastic stresses; E and 
indicate the elastic and viscosity constants of the microtube, 

respectively.     

 
Figure 1. A microtube embedded in a nonlinear elastic medium 

conveying fluid flow. 

Employing the MCST, the symmetric curvature (  ij
) is related 

to the displacement components as follows 
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The deviatoric symmetric couple stress (
ijm ) and the 

symmetric curvature are also related by the following relation 
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where l denotes the scale parameter, and v is Poisson’s ratio. It 

should be noticed that “e” and “v” represent the elastic and 

viscoelastic segments of the corresponding tensor, respectively. 

Formulating the kinetic energy, elastic energy, external work, 

the work done due to the internal friction and the elastic energy 

of the nonlinear elastic medium, and then applying Hamilton’s 

principle, the coupled nonlinear equations of the microtube are 

obtained. To obtain numerical results, first the derived 

equations are made dimensionless. Then, the equations are 

discretised using the following relations  
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in which  ,x x L   ˆu u D  and  ˆw w D  are respectively the 

dimensionless axial coordinate, axial displacement and 

transverse deflection. The dimensionless time is also denoted 

by     
4=t EI L M m  where m, M and I indicate the tube 

mass per length, the fluid mass per length and the tube moment 

of inertia, respectively. The microbeam is composed of epoxy 

polymeric micromaterials. The detailed materials properties are 

described in the next section. (qk,rk) and (
kW ,

kU ) represent the 

generalised coordinates and shape functions, respectively. 

Applying Eq. (5), the derived equations can be written as 
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where ( , )k lm
ijJ  are obtained using the Galerkin approach. In Eq. 

(6), i takes integer values from 1 to Nu while i varies from 1 to 

Nw in Eq. (7). Moreover, in these equations, the non-

dimensional parameters are defined as 
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where k1, k2, A and T indicate the linear spring stiffness, 

nonlinear spring stiffness, cross-sectional area and pretension, 

respectively. A discretised system with 10 shape functions 

along each direction is taken into account. A backward 

differentiation formula is finally utilised to obtain the results. 

Numerical results 

A microtube conveying fluid flow embedded in a nonlinear 

elastic medium is taken into consideration. The material and 

geometrical properties are as ρmt=1220 kg/m3, ρf=1000 kg/m3, 

ν=0.38, E=1.44 GPa, Di=30 µm, D=55 µm and L/D=100 

where ρmt and ρf are respectively the microtube mass density 

and the fluid mass density [23]. In addition, unless clearly 

mentioned otherwise, the dimensionless parameters of the 

microscale system conveying fluid flow are set to  =5.0, 

Ωe/ω1=1, β=0.2577, αv=0.0002,  =0.4575, S=100, 
0

=1.2331×105, K1=50 and K2=50.  

Figure 2 shows the bifurcation plots of microscale fluid-

conveying tubes for the transverse motion (q1) in the 

supercritical regime. The dimensionless speed of the fluid flow 

is set to uf=8.2. The critical speed of the fluid flow related to 

divergence is 8.1446. From the figure, it can be seen that as the 

forcing amplitude increases, the microscale fluid-conveying 

tube undergoes many changes in terms of the dynamic 

behaviour. Many motion types including period-1, period-2, 

period-5 and chaos are observed. It implies that near the critical 

speed, the nonlinear dynamic behaviour of microscale fluid-

conveying tubes is very sensitive to the forcing amplitude. For 

instance, in figure 3, the phase-plane portrait of the period-5 

motion found in figure 2 at f1=11 is plotted.  

In figure 4, the bifurcation plots of microscale fluid-conveying 

tubes in the supercritical regime for the transverse motion (q1) 

are plotted; the fluid speed is set to uf=8.3. The influence of a 

slight increase in the speed of the fluid flow is examined. Again, 

a diversity of motion types is found for the microscale fluid-

conveying tube. Nonetheless, a slight increase in the speed of 

the fluid flow perceptibly reduces the complexity of the 

dynamic behaviour as well as its diversity in the supercritical 

regime. Moreover, it is found that the last chaotic region of the 

microscale fluid-conveying tube shifts to the right (near f1=60) 

with slightly increasing the fluid speed. In addition, to give 

more details about the first chaotic motion found in figure 4 (at 

f1=2.7), the phase-plane portrait is illustrated in figure 5 for this 

scale-dependent motion.        

 

 
Figure 2. Bifurcation plots of microscale fluid-conveying tubes for 

q1 in the supercritical regime for uf=8.2. 

 
Figure 3. Phase-plane portrait of the period-5 motion found in figure 2 

at f1=11.  

 
Figure 4. Bifurcation plots of microscale fluid-conveying tubes for 

q1 in the supercritical regime for uf=8.3. 
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Figure 5. Phase-plane portrait of the chaotic motion found in figure 4 

at f1=2.7. 

Conclusions 

The bifurcation response of microscale fluid-conveying tubes 

was studied with consideration of the effect of internal energy 

loss. The microscale fluid-conveying tube was externally 

excited by a harmonic load along the transverse direction. 

Furthermore, the microscale tube was surrounded by a 

nonlinear elastic medium. The MCST, as a size-dependent 

continuum approach, Hamilton’s approach, as an energy/work 

principle and Galerkin’s scheme as a discretisation approach 

were applied for deriving a set of nonlinear coupled equations 

for the microscale fluid-conveying tube. The bifurcation of the 

microscale fluid-conveying tube in the supercritical regime was 

predicted by a time-integration technique. 

It was found that as the forcing amplitude increases, the 

microscale fluid-conveying tube undergoes many changes in 

the nonlinear dynamic behaviour in the supercritical regime. 

Close to the critical speed, the nonlinear dynamic behaviour of 

microscale fluid-conveying tubes is very sensitive to the forcing 

amplitude of the excitation harmonic load. In the supercritical 

regime, a slight increase in the speed of the fluid flow decreases 

the complexity of the dynamic behaviour. Furthermore, a slight 

increase in the fluid speed makes the last chaotic region of the 

microscale system occur at higher forcing amplitudes.  
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