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Characteristics of passive scalar within Kármán vortices
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Abstract

This work focuses on the statistical properties of the tempera-
ture (passive scalar) field exclusively inside the Kármán vortex
based on the phase-averaging data, which are intrinsically dif-
ferent from the conventionally averaged statistics that weight
all regions of the flow equally. The vortices are generated by a
circular cylinder, and the fluctuating flow velocity and temper-
ature behind the cylinder are simultaneously measured in the
plane of mean shear at x/d = 10 where x is the streamwise dis-
tance from the cylinder centre and d is the cylinder diameter.
The Reynolds number based on d and the free-stream veloc-
ity is 2.5× 103. Statistics of the temperature fluctuation θ and
its streamwise derivative θ,1 , including their probability den-
sity function, skewness and kurtosis inside the Kármán vortex
are found to follow a Gaussian distribution, which is distinctly
different from their conventional counterparts. Both the con-
ditional correlation coefficient between θ and θ,21 and the con-
ditional expectation of θ,21 indicate that the temperature field
inside the Kármán vortex is free from the effect of the large-
scale events outside the vortex, like the cold/warm temperature
front along the diverging separatrix and the coherent strain in
the saddle region, so that the small- and large-scale fluctuat-
ing temperatures inside the vortex are at best weakly coupled,
which is the major reason for the almost Gaussian behavior of
the statistics of the temperature field inside the Kármán vortex.

Introduction

A distinct characteristic of a passive scalar such as heat mixed
by a turbulent flow is the presence of the ramp-cliff structure
in the temporal trace of the temperature fluctuation as a result
of the temperature jump in the flow field [12]. This essentially
reflects the fact that the temperature field is physically arranged
in the form of concentration ‘plateaus’ separated by warm/cold
temperature fronts [10]. Although the fronts are large-scale
events, of the same order of magnitude as the integral scale,
there is ample evidence that the ramp-cliff structures make an
important contribution to the non-zero skewness of the temper-
ature derivatives both in the streamwise and lateral directions
[9, 11]. Warhaft [12] argued that it is this coupling between
large- and small-scale characteristics which is at the origin of
the departure from local isotropy of passive scalars in turbulent
flows.

Antonia et al. [1] studied the topology of the velocity and tem-
perature fields in the nearly self-preserving region of a turbu-
lent plane jet and found that the temperature front is aligned
with the diverging separatrix which connects adjacent vorti-
cal structures. A similar feature was also observed in the
near/intermediate wake of a circular cylinder [2], where the di-
verging separatrix connects consecutive strong Kármán vortices
of opposite sign. The study[2] also demonstrated that high tem-

perature concentration occurs within the Kármán vortices when
heat is injected into the flow via the boundary layer around the
heated cylinder. Mi & Antonia [3] found that the temperature
and voritcity fluctuaitons in the vortex display similar distribu-
tion. Husssain & Hayakawa [5] pointed out that the turbulence
produced in the saddle region is transported along the diverg-
ing separatrix and accumulated in the region near the center of
the Kármán vortex. Consequently, the Kármán vortices are also
associated with the concentrations of the major incoherent ran-
dom motions. Now that the temperature field within the vortex
is spatially separated from the large-scale temperature front as
well as from the coherent strain rate in the saddle region, one
may expect that the large- and small-scale fluctuating temper-
atures within the Kármán vortex are statistically independent,
and thus the temperature field within the Kármán vortex exhibits
different statistical properties from those outside. However, it
has not yet been confirmed in available literature. This is of
fundamental importance. A positive answer may indicate that
the passive scalar ‘patch’ around the core of the Kármán vor-
tex (remote from the vortex boundary) would satisfy the local
homogeneity and local isotropy reasonably well and thus allow
the properties of the small-scale passive scalar to be examined,
which is the major motivation of the present study.

Experimental details

A detailed description of the experimental configuration was
given in [2] and here we briefly recall some important features
of the experimental details. The experiment was conducted
in an open-loop wind tunnel with a working section of 1.2 m
(width) × 0.8 m (height) and 2.0 m long. A circular cylin-
der was used to generate the wake, which is a smooth brass
tube of 110 cm long with an outer diameter d = 12.7 mm. A
coiled heating wire was inserted into a ceramic tube, which was
placed inside the cylinder to act as a heating element. A sim-
plified sketch of the coordinate system, including symbol defi-
nitions, is shown in figure 1a. The free-stream velocity U1 was
3.0 m/s, corresponding to a Reynolds number Re (≡U1d/ν) of
2.5× 103, where ν is the kinematic viscosity of air. A mov-
able probe consisting of four X hot wires (X1 – X4 in figure 1b)
and four cold wires (C1 – C4 in figure 1b) was used to capture
the velocity and temperature fluctuations as well as their spa-
tial derivatives simultaneously. Measurements were conducted
within the cylinder mid-span plane at x∗ = 10, 20 and 40. Here-
after, an asterisk denotes normalization by d for convenience.

The focus is primarily on the statistics of the temperature fluc-
tuation θ and its streamwise derivative θ,1 (≡ ∂θ/∂x) at x∗ = 10.
The unheated cylinder wake is assumed to be statistically sym-
metrical about the centerline. As a result, the present measure-
ments were made only on one side of the centerline, i.e., y∗ =
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Figure 1: Simplified sketch of the coordinate system and the
definitions of symbols.

−0.2 to 2.8, with a transverse measurement increment of about
0.2. The maximum mean temperature excess Θ0 on the center-
line, with respect to the ambient fluid, is about 1.6◦C, which is
small enough to avoid any buoyancy effects, and hence allows
the heat to be treated as a passive scalar.

The streamwise θ,1 is estimated using Taylor’s hypothesis, i.e.,
θ,1≈ ∆θ/(−∆tUc) where Uc = 0.87U1 is average convection
velocity of the vortices and ∆θ is the difference between the
consecutive points in the time series of the temperature fluctua-
tion and ∆t = 1/ fsamp, where fsamp = 2500 Hz is the sampling
frequency. The sampling period of time is about 45s. Note that
[7] valiedated the use of Taylor’s hypothesis in the near wake
of a circular cylinder for a Reynolds number similar to that
in the present experiment. The spatial resolution of the mea-
surement in the x direction is estimated to be about 5.8η where
η≡ (ν3/ε)1/4 is the Kolmogorov length scale on the wake cen-
terline and ε is approximated by assuming transverse (y-z plane)
homogeneity, instead of isotropy.

Results and discussion

For a clear visualization of the temperature field, the isocontours
of the phase-averaged temperature fluctuation in [2] are replot-
ted here in figure 2a. The detailed description of the phase-
average technique is provided in [2]. Phase averaging is based
on a total of 1980 detected vortex shedding periods so that the
coherent component θ̃ of θ may be extracted, as shown in figure
2a, with the random fluctuation of θ removed. The phase φ can
be interpreted in terms of a longitudinal distance based on Tay-
lor’s hypothesis, and φ = 0 - 2π corresponds to the vortex wave-
length. The Kármán vortex centers and saddle points, identified
from the phase-averaged sectional streamlines (not shown), are
marked by ‘+’ and ‘×’, respectively. The thick dashed lines
give an approximate idea of the vortex boundary. The inclined
dash-dotted line passing through the saddle point represents the
diverging separatrix.

Figure 2a clearly shows that the warm fluid (positive θ̃) is dis-
tributed concentrically within the Kármán vortices, while the
cold fluid (negative θ̃) entrained by the vortices from the am-
bient free stream resides in the alley way between consecutive
vortices. A large-scale warm/cold temperature front forms ap-
proximately along the diverging separatrix, which is in accord
with Antonia et al.’s [1] observation in a plane jet. Figure 2b
displays the probability density function (pdf) of the temper-
ature relative to the ambient temperature PΘ(φ=0)(Θ ≡ θ+Θ,
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Figure 2: (a) Isocontours of phase-averaged temperature θ̃.
Flow is from left to right, as indicated by the horizontal arrow.
(b) Probability density function of Θ(φ = 0) and Θ (relative to
the ambient temperature) at y∗ = y∗c . The Gaussian distribu-
tion with the same mean and standard deviation as the pdf of
Θ(φ = 0) is also shown.

where Θ is the mean temperature relative to the ambient) at the
vortex center, that is, the conditional pdf of Θ given φ = 0 at
y∗ = y∗c where y∗c = 0.39 is the lateral position of the vortex
center (figure 2a). The conventional pdf, PΘ, of Θ at the same
lateral position is also presented for comparison. Interestingly,
PΘ(φ=0) follows a Gaussian distribution almost perfectly, while
PΘ displays a relatively sharp cutoff on its left side because of
the presence of the cold fluid. Note that the cutoff tempera-
ture of PΘ is very close to the ambient temperature, i.e. 0 (the
temperature in figure 2 is relative to the ambient temperature).
The characteristic of the nearly Gaussian temperature distribu-
tion is further confirmed by the skewness (S) and kurtosis (K) of
θ at other locations within the vortex (figure 3). The skewness
Sθ(φ=0) of the temperature fluctuation across the vortex (y∗ = 0
- 1.4, φ = 0), is closer to 0 than the conventional Sθ, particularly
at the position corresponding to the vortex center (y∗ = y∗c). The
larger positive Sθ reflects the presence of the long positive tail
of PΘ in figure 2b. A similar observation applies when com-
paring the kurtosis of the temperature within the vortex Kθ(φ=0)
with the conventional Kθ across the Kámán vortex (figure 3b);
Kθ(φ=0) is in general closer to the Gaussian value of 3 than Kθ.

The large-scale temperature front is always associated with a
large temperature gradient, thus resulting in the non-Gaussian
statistics of the temperature field [4]. The practically Gaussian
distribution of temperature within the vortex is consistent with
the observation that only warm fluid appears about the vortex
center (figure 2a ), and indicates that the temperature field near
the center of the vortex is free of large temperature jump.

The pdf, Pθ,1(φ=0), of θ,1 at the Kámán vortex center, i.e. the
conditional pdf of θ,1 given φ = 0 at y∗ = y∗c , is compared in
figure 4 with the conventional pdf, Pθ,1 , of θ,1 at the same lat-
eral position (y∗ = y∗c). The log-linear scale is used in order to
highlight the tails of the pdf. As expected, Pθ,1 departs signif-
icantly from the Gaussian distribution, displaying exponential
tails, which is consistent with the previous observations [12].
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Figure 3: Lateral distribution of (a) skewness and (b) kurtosis
of θ(φ = 0) and θ. The vertical dashed line in (a) marks the
lateral position corresponding to the vortex center. The hori-
zontal dashed-line in (b) marks the value of 3, the kurtosis of a
Gaussian distribution.

Interestingly, Pθ,1(φ=0) tends to have only slightly broader tails
compared with the Gaussian distribution. The difference be-
tween Pθ,1 and Pθ,1(φ=0) highlights the distinct statistical prop-
erties of the small-scale temperature within and outside the
Kámán vortex. This is also confirmed by the difference be-
tween the skewnesses Sθ,1 and Sθ,1(φ=0) or the kurtosises Kθ,1
and Kθ,1(φ=0), as shown in figure 5. Compared to Sθ,1, Sθ,1(φ=0)
is closer to 0 at locations above the vortex center (y∗ > 0.4), es-
pecially at y∗ = 0.6− 1.0 (figure 5a). It is noted that the mag-
nitude of Sθ,1(φ=0) is increasing as y∗ approaches the wake cen-
terline. This is because as y∗ decreases to 0, it gets closer to the
vortex periphery where the temperature gradient becomes larger
compared to that in the vortex core region. Similarly, Kθ,1(φ=0)
is closer in magnitude to the Gaussian value of 3 than Kθ,1 at
the same lateral position (figure 5b).

Filled with random incoherent motions [5], the vortex roll acts
to form, within its boundary, a high concentration of small-scale
temperature fluctuations of warm fluid, while the large-scale
temperature front occurs outside the vortex along the diverging
separatrix [1, 2]. We use θ,21, which is one component of the
temperature variance dissipation rate χ (≡ κ(θ,21 +θ,2y +θ,2z ); κ

is the thermal diffusivity), to characterize the small-scale tem-
perature. The conditional correlation coefficient, i.e. the cor-
relation coefficient between θ and θ,21 with the same φ (at the
same y∗ position), is defined as

ρ(θ,θ,21 |φ)≡

 (θ−θ)(θ,21−θ,21)

σθσ
θ,21

|φ

 (1)

where σ is the standard deviation of a fluctuating variable. Fig-
ure 6a shows the color-filled isocontours of ρ(θ,θ,21 |φ), super-

Figure 4: Probability density function of θ,1 (φ = 0) and θ,1 at
y∗ = y∗c .

posed onto the isocontours of the phase-averaged temperature
(shown in figure 2a), the latter serving as a reference. A large
value of ρ(θ,θ,21 |φ), about 0.5, appears in the saddle region
along the diverging separatrix where the large-scale tempera-
ture front forms, while small values, about 0.05 (i.e. one order
of magnitude smaller), can be found in the downstream half
of the vortex. The minimum correlation coefficient is displaced
from the vortex center, probably because of the physical separa-
tion between concentrations of θ and θ,21 within the vortex. One
may expect that the dependence between θ and θ,21 is weak in a
region where the correlation coefficient is small so that (small-
scale) θ,21 is statistically independent of (large-scale) θ. To char-
acterize the dependence of θ,21 on θ, the conditional expectation
(or mean value) of θ,21 (φ), i.e. E(θ,21 (φ)|θ(φ))†, is examined in
figure 6b, where ‘†’ denotes normalization by θ,21 (φ). Phases φ

= 0, -0.1π, -0.2π and φ = -0.8π correspond to the locations, in
figure 6a, where ρ(θ,θ,21 |φ) is small and large, respectively. A
constant E(θ,21 (φ)|θ(φ))† is expected when θ,21 (φ) and θ(φ) are
statistically independent of each other. For locations associated
with a small correlation coefficient, E(θ,21 (φ)|θ(φ))† is gener-
ally equal to unity, indicating that θ,21 (φ) is statistically indepen-
dent of θ(φ). In contrast, E(θ,21 (φ)|θ(φ))† shows a dependence
on θ(φ) when the correlation coefficient is large. A large value
of E(θ,21 (φ)|θ(φ))† is generally associated with a large magni-
tude of θ(φ), except when θ(φ)/θ(φ)rms is extremely large.

The results of figure 6 provide some useful physical insight into
the difference between the phase-averaged and conventional
statistics of the temperature field. Along the diverging sep-
aratrix in the saddle region where the large-scale temperature
front presents, the small-scale temperature fluctuations are sig-
nificantly affected by the large scales, as reflected by the large
correlation coefficient between θ and θ,21 in the saddle region
(figure 6a) and the appreciable dependence of E(θ,21 (φ)|θ(φ))†

on θ(φ) for φ = -0.8π (figure 6b). Previous studies have shown
that this coupling between large and small scales is responsible
for the non-Gaussian statistics of the temperature field [6, 11].
The coherent strain in the saddle region may play a role in the
interaction between the large and small temperature scales since
the strain rate may act to amplify the temperature gradient [8].
Conversely, the temperature field within the Kámán vortex is
‘isolated’ by the vortex structure from the effect of the large-
scale temperature front as well as the coherent strain in the sad-
dle region. As such, the small-scale temperature fluctuations
are only weakly affected by the large-scales, as evidenced by
the small value of ρ(θ,θ,21 |φ) within the vortex (figure 6a) and
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Figure 5: Lateral distribution of the (a) absolute value of skew-
ness and (b) kurtosis of θ,1 (φ = 0) and θ,1. The horizontal
dashed-line in (b) marks the value of 3, the kurtosis of a Gaus-
sian distribution.

the almost constancy of E(θ,21 (φ)|θ(φ))† for φ = 0 to -0.2π (fig-
ure 6b). The incoherent random motions within the vortex lead
to the nearly Gaussian behaviors of both θ and θ,1 in this region.

Conclusions

The temperature field in the Kármán vortex displays quite dif-
ferent statistical features from the corresponding conventional
statistics. The vortex structure acts to segregate the temperature
field inside Kármán vortices from the large-scale temperature
front in the saddle region. Consequently, the small- and large-
scale temperature fluctuations inside the vortex are at most
weakly coupled. Despite the relatively small Taylor micro-scale
Reynolds number (about 100), the nearly zero skewness of the
temperature derivative within the Kármán vortex suggests that
the associated temperature field is much closer to local isotropy
than that outside.
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