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Abstract

A flow reconstruction methodology utilizing resolvent analy-
sis and data-assimilation is applied to flow around a NACA
0018 airfoil at an angle of attack α = 10◦ and chord-based
Reynolds number Re = 10250. The underlying principle of the
reconstruction is to maximize the value of limited experimen-
tal measurements as the only inputs are a rough approximation
of the mean profile and two time-resolved probes. The input
data may be incomplete, in the sense that measurements near
a body are difficult to obtain with techniques such as particle
image velocimetry (PIV), or contaminated by noise. The final
reconstruction contains less measurement noise compared to the
PIV data and obeys the incompressible Navier-Stokes equations
(NSE).

Introduction

A growing number of studies have used the time-averaged flow,
or the mean, and limited time-resolved measurements to recon-
struct statistically stationary flows. The mean can be used as an
input to the resolvent analysis of [6], which recasts the Navier-
Stokes equations as a closed-loop system. The linear dynamics
act as a directional amplifier and are forced by the nonlinear
interaction of velocity modes. A singular value decomposition
(SVD) of the resolvent operator ranks the dominant coherent
structures at a given temporal frequency by their gain or sin-
gular value. Quite often, the leading singular value is signifi-
cantly larger than the others, a feature exploited by [4] and [1]
to compute the structure at a given frequency without resorting
to data-driven methods. The amplitude and phase, or complex
weight, of the response modes was determined using a single
time-resolved measurement in an energetic region of the flow.

A similar reconstruction procedure was adapted by [2] for tran-
sitional jets and [10] for a NACA 0012 airfoil at a non-zero an-
gle of attack. However, there are limitations to this method,
some of which have been discussed by [11] and [8]. If the
nonlinear forcing is not white in noise and time, for example,
a low-order representation by resolvent modes is not likely to
predict structures which agree with modes computed from data.
It is also assumed that knowledge of the mean profile is avail-
able everywhere, but this might not be the case with experi-
mental data. The focus here is on applying data-assimilation,
a technique whereby experimental measurements are merged
with computational fluid dynamics [5], to address one limitation
of the methodology outlined in figure 1. The mean flow around
a NACA 0018 airfoil at α = 10◦ and Re = 10250 is obtained
by time-averaging PIV data. It is then data-assimilated to fill in
missing data and extrapolate beyond the PIV domain before be-
ing used as an input to resolvent analysis. The resolvent modes
are computed and calibrated using time-resolved measurements
to reconstruct the unsteady velocity fields.

Methods

Experimental Setup

PIV data are collected for a NACA 0018 airfoil with a chord

Figure 1: A schematic inspired by [2] of the flow reconstruction
procedure.

length of 10 cm and a spanwise extent of 48 cm at a chord-
based Reynolds number of Re = 10250 and an angle of attack
of α = 10◦. A LaVision time-resolved 2D PIV setup is used
consisting of two Phantom Miro 320 cameras with 50 mm focal
length Nikon lenses and 1:1.8 aperture. They have an overlap
of 18% in the streamwise direction and sample the flow at a
frequency of 125 Hz. The cameras’ resolution is 1920× 1200
pixels and they are calibrated at 8.2 px/mm. The laser sheet is
provided by a YLF dual cavity solid-state laser and is centered
at a height of 220 mm.

Velocity vectors are computed using the software package
DaVis provided by LaVision. A standard cross-correlation tech-
nique via Fast Fourier Transformation is applied to each se-
quential image with a window-size reduced from 64× 64 px2

to 32× 32 px2 over three passes, a 50% overlap, and a 2:1 el-
liptic weight. Finally, the data are post-processed and single
missing vectors are interpolated using an average of all the non-
zero neighborhood vectors. 7,000 snapshots are collected and
these are averaged in time to obtain the mean velocity profile
and Reynolds stresses.

Data-Assimilation

The experimental application of the data-assimilation frame-
work introduced by [3] is described in detail by [9] so only the
equations are summarized here. To begin with, the incompress-
ible NSE are non-dimensionalized by the free-stream velocity
and airfoil chord such that they can be written as

∂tu+u ·∇u =−∇p+Re−1
∇

2u (1)
∇ ·u = 0. (2)

After Reynolds decomposing the field into a mean and fluctu-
ation, i.e., u = u+ u′, one obtains the incompressible RANS



equations which the data-assimilated field must satisfy:

u ·∇u+∇p−Re−1
∇

2u = f (3)
∇ ·u = 0, (4)

where f is the divergence of the Reynolds stress tensor. It is
assumed that only u is known a priori from experiment and f is
obtained by solving the constrained optimization problem

L = E−
〈

u†,u ·∇u+∇p−Re−1
∇

2u− f
〉
−
〈

p†,∇ ·u
〉
, (5)

where (·)† denotes an adjoint quantity and 〈a,b〉=
∫

Ω
a ·b dΩ.

The scalar E penalizes the difference between the experimental
mean profile uexp and u which satisfies equation (3)

E(u) =
1
2
‖m−M (u)‖2

M . (6)

The quantity m represents the measurements available from the
PIV while the operator M projects the numerical data onto the
measurement subspace M, which is generally of much lower
dimension. The variational derivatives of L with respect to the
forward and adjoint states yield the equations which are solved
iteratively to update f until L is minimized, yielding the best
assimilated mean.

Resolvent Analysis

The fluctuation equations are written such that the nonlinear
terms are treated as a forcing term

∂tu′+u ·∇u′+u′ ·∇u+∇p′−Re−1
∇

2u′ = f′ (7)
∇ ·u′ = 0, (8)

where f′ = −u′ ·∇u′+u′ ·∇u′. If the flow is stationary, equa-
tion (7) is Fourier-transformed in time and rearranged to yield
a transfer function between a disturbance f̂ and a velocity re-
sponse û

û = CT (iωB−L)−1Cf̂ = H (ω)f̂, (9)

where H (ω) is the resolvent operator, C = (1 0)T , B = CCT ,
and L is the linear Navier-Stokes operator. It should be
noted that the only input required for this analysis is the data-
assimilated mean profile, which is solved for on the entire com-
putational domain as opposed to the experimental mean.

A singular value decomposition (SVD) of the resolvent operator
results in

H (ω) =
∞

∑
j=1

ψ̂ j(ω)σ j(ω)φ̂ j(ω), (10)

where ψ̂ j is the jth resolvent response mode with a gain of σ j.
The shape of the disturbance which most effectively triggers
this velocity response is given by the associated resolvent forc-
ing mode φ̂ j. In many instances, the gain associated with the
first mode is significantly larger than the other singular values
signifying that equation (10) can be approximated as

H (ω)≈ σ1(ω)ψ̂1(ω)φ̂
∗
1(ω). (11)

The linear operators needed to obtain the most amplified resol-
vent modes are formed in FreeFem++ and are computed using
the procedure outlined in [7].

Reconstruction Procedure

Resolvent analysis does not supply the complex amplitude of
each response mode which can be computed by projecting the
forcing modes onto the nonlinear forcing

û(ω) = ∑
j

ψ̂ j(ω)σ j(ω)
〈
f̂(ω), φ̂ j(ω)

〉
= ∑

j
ψ̂ jσ jχ j, (12)

where the functional dependence on ω was omitted on the right-
hand side for conciseness. Since f̂ is unknown, only the first
resolvent response mode is computed due to the low-rank nature
of H (ω) and its weight χ1 = σ1χ1 is computed using a velocity
probe located in an energetic region of the flow x0. Following
[4], the signal ǔ(t,x0) is Fourier-transformed in time to predict
the amplitude of the corresponding resolvent mode through the
following expression:

χ1(ω) = û(ω,x0)/ǔ(ω,x0). (13)

As explained by [4], it is possible to use more than one probe
point in the flow and solve the overdetermined set of equations
using a least-squares approach.

Results

Assimilated Flow

The u-component of the data-assimilated mean is compared to
its PIV equivalent in figure 2. The agreement between the fields

(a)

(b)

Figure 2: (a) PIV mean field and (b) data-assimilated mean
field. The black line represents the u = 0 contour and demar-
cates the recirculation bubble.

is generally very good and there are two noticeable improve-
ments after the assimilation process. First, the data near the
separation point (dashed green box) is filled where there is in-
sufficient seeding density and resolution to capture the flow.
Second, the PIV mean field consists of two means (α = ±10◦)
which are stitched together since the airfoil obstructs the laser
sheet on one side. The data-assimilation is able to improve the
stitching which is faintly visible near the trailing edge of the
airfoil (dashed-dotted green box).

Amplification Mechanisms

The first two singular values are computed for the experimen-
tal and data-assimilated profiles to identify the primary amplifi-
cation mechanisms and the frequency ranges where the rank-1
approximation is appropriate. The experimental profile is inter-
polated onto a FreeFem mesh and, in regions outside the PIV
domain, the velocity is set to u = [1 0]T . The no-slip boundary
condition is manually enforced along the airfoil surface. The
results over a range of ω are plotted in figure 3. Both curves
contain a peak around ω = 6.5 while only the data-assimilated
peak contains a peak around ω = 15. Moreover, the range of
frequencies where σ1� σ2 is far wider for the data-assimilated
profile than it is for the experimental one.



ω
0 5 10 15 20 25 30

σ
j

10
0

10
1

10
2

10
3

10
4

10
5

σ1

σ2

(a)

ω
0 5 10 15 20 25 30

σ
j

10
0

10
1

10
2

10
3

10
4

10
5

σ1

σ2

(b)

Figure 3: First two singular values plotted as a function of ω for
the (a) experimental and (b) data-assimilated means.

The mode shapes are plotted for three frequencies correspond-
ing to the two peaks in figure 3(b) as well as an intermediate
frequency at ω = 12. Two linear mechanisms can be identi-
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Figure 4: Optimal resolvent response modes for (a) ω = 7.3, (b)
ω = 12.0, and (c) ω = 15.4 using the data-assimilated mean.

fied from the mode shapes in figure 4. The first corresponds to
wake modes which occur at lower temporal frequencies as seen
in figure 4(a). The second corresponds to shear layer modes
which occur at higher temporal frequencies as seen in figure
4(c). The mode shapes for intermediate frequencies have a mix
of both linear mechanisms as seen for the ω = 12 mode in fig-
ure 4(b), which has activity both in the shear layer and the wake.
These results are consistent with [10] and [12], who computed
resolvent modes for a NACA 0012 airfoil at a similar Reynolds
number and angle of attack. The latter study also identified
two branches in the spectrum which were categorized as wake
modes or shear layer modes.

Flow Reconstruction

The results from the previous section highlight the benefit of
data-assimilating the experimental mean, which failed to iden-
tify the amplification mechanism associated with the shear layer
due to missing PIV vectors near the separation point. The
modes shapes obtained from resolvent analysis of the data-
assimilated mean are utilized to approximate the full flow field.
The probe points, which are used to calibrate the amplitude
of the resolvent modes, are shown in figure 5 and measure v′.
These have been chosen specifically to capture energetic regions
of the flow where the dynamics associated with the shear layer

Figure 5: Locations (red dots) of probe point 1 in the shear
layer and probe point 2 in the wake. The plot also contains PIV
vectors to visualize the vortical regions in the flow.

(point 1) and the wake (point 2) are present.

The power spectra for the two probe points are presented in
figure 6. The result in figure 6(a) is similar to the resolvent
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Figure 6: Power spectrum at (a) point 1 and (b) point 2.

norm in figure 3(b) in that there are two main peaks around
which the fluctuation energy is concentrated. The power spec-
trum in figure 6(b) illustrates how the fluctuation energy be-
comes almost exclusively concentrated in the wake modes fur-
ther downstream. A single probe point in this location, there-
fore, is unlikely to successfully reconstruct the flow further up-
stream where there is more energy in higher frequency modes.

Three cases are compared where the flow is reconstructed using
a probe located at point 1 only, point 2 only, and both points
1 and 2. Quantitive comparisons among these cases are made
using the error metrics outlined in [2]. The instantaneous error
Iv(t) is

Iv(t) =

√√√√ 1
N

N

∑
i=1

(vi(t)− vi
re f (t)

2, (14)

where v denotes only the transverse velocity component is be-
ing considered, N is the number of discrete points where the
velocity is known, and the reference field is the PIV snapshot.
The global error Ev is obtained by integrating equation (14) in
time to obtain

Ev =
1
T

∫ T

0
I(t)dt. (15)

The reconstructed flow using both points is compared to the
raw PIV snapshot (no filtering) for t = 4.82 in figure 7. The
resolvent-based reconstruction captures several flow features
quite well. The agreement in the shear layer region (0.5 < x <
1.5), for example, is very good although the fluctuation levels
in the PIV are slightly higher. The model is also capable of cap-
turing the transition from the shear layer dynamics to the wake
dynamics around the trailing edge where the wavelength of the
fluctuations increases substantially immediately behind the air-
foil. The model also shows these two mechanisms interacting
in the region (1 < x < 1.5).
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Figure 7: v′(t = 4.82) for the (a) PIV snapshot and (b) resolvent-
based model.

The performance of the model is poorer in the wake region.
While it does correctly capture the correct wavelengths, it tends
to overestimate the intensity of the fluctuations. This is most
likely due to the fact that the wake dynamics are more reminis-
cent of oscillator-type behavior where the nonlinear forcing is
structured and cannot be assumed to be white in noise and time.
The shear layer dynamics, on the other hand, are more reminis-
cent of amplifier-type behavior where unstructured forcing is a
more reasonable assumption. We have not included frequencies
where the rank-1 approximation is not valid (ω > 20) and so the
finer scale structures are filtered out.

Finally, the performance of the model using just one point in-
stead of both points is evaluated by computing Ev for each case.
The results are summarized in table 1. The best performing

Error Ev

Point 1 Point 2 Points 1 + 2
1.70 0.0416 0.0266

Table 1: Global error as a function of point selection.

case, not surprisingly, is using both points 1 and 2 while the
worst performing case is the use of only point 1. One point is
suboptimal since there are two mechanisms leading to ampli-
fication and peaks in the local power spectra. In figure 6(a),
for example, the bulk of the fluctuation energy is concentrated
around frequencies corresponding to the shear layer dynamics.
When only point 1 is used, therefore, the model is overfitting the
amplitudes to these higher frequencies resulting in a gross over-
estimation of the fluctuations behind the airfoil. In a similar
manner, the power spectrum of point 2 has peaks exclusively
centered around wake modes. The resulting model, therefore,
predicts no fluctuations in the shear layer. Since the two linear
mechanisms are well separated in physical space, it is difficult
to select a single point which can accurately capture the fluctu-
ations associate with both linear mechanisms and so the use of
two points significantly outperforms the use of just one.

Conclusions

The flow around a NACA 0018 airfoil at α = 10◦ and Re =
10250 has been reconstructed using resolvent analysis and data-
assimilation. Even though the PIV mean velocity field con-
tained defects such as missing data near the leading edge and
errors in the stitching process, the data-assimilation was able to
correct these defects and extrapolate the mean field such that a
global analysis could be conducted. The largest singular value

of the data-assimilated mean recovered two peaks, highlighting
the role of two linear mechanisms, whereas the experimental
mean contained a single peak. The first was associated with the
shear layer at high frequencies while the second was associated
with wake modes. Two time-resolved probes were selected in
regions where both linear mechanisms were energetic leading
to considerable improvement in the reconstruction compared to
the use of a single point.
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