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Abstract

A number of celestial bodies are known to emit supersonic jets
that can be so fast that they escape gravity. The complex fea-
tures of such jets, that involve particulates, phase changes and
rarefaction effects are modelled here by assuming a steady ax-
isymmetric jet of a perfect gas. It is shown that the escape veloc-
ity of a gas is much smaller than that of a solid object. A closed
form solution is obtained to the penetration height of such a jet
with an isentropic expansion. Unsteady, inviscid computations
confirm this result with the difference that the entropy increase
across the normal shock in the jet causes the penetration height
to be somewhat smaller than that given by the theory. The re-
sults are applied to a photograph of the volcano Tvashtar on the
moon Io of Jupiter, in order to estimate the volcano’s jet speed
at the surface and its reservoir temperature.

Introduction

It was shown in [1] that, for steady isentropic axisymmetric flow
of a perfect gas in an inverse square gravitational field, that the
energy equation can be integrated, the only agency changing
the total enthalpy of the gas being the work done against grav-
ity. This derivation and its consequences for the escape velocity
of a gas and for the penetration radius of a supersonic jet will
be briefly reviewed. One of the important consequences is that
the escape velocity of a gas is much smaller than that of a solid
body. Examples of data for some moons in the solar system
are shown in Table 1, showing solid body, ues, and gas, ueg, es-
cape velocities. The results will then be applied to a particular

Body Gas ues ueg
km/s km/s

Titan Methane 2.65 0.80
Enceladus Water 0.239 0.090
Io SO2 2.36 0.78
Ganymede Oxygen 2.74 1.12
Callisto CO2 2.44 0.92
Europa Oxygen 2.03 0.83

Table 1: Examples of parameters of moons in our solar system

volcano on the moon Io of Jupiter, in order to estimate charac-
teristics of the jet.

Theoretical and numerical analysis

Consider a steady axisymmetric supersonic jet of a perfect gas
issuing from the surface of a celestial body. Let the x-axis be
the coordinate along the axis of the jet, y normal to this axis.
Let u and v be the corresponding velocity components. Let h
be the total enthalpy of the gas and p and ρ be its pressure and
density. Thus
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p
ρ
+
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2
, (1)

where γ is the ratio of specific heats. Then with t being the time,

the unsteady energy equation is
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With an inverse square gravity field, and acceleration of gravity
g at the moon’s surface (r = r0),
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, r2 = x2 + y2. (3)

Setting the time derivatives to zero for steady flow, observe that,
along the jet axis, v = 0, y = 0 and x = r, so that, along the jet
axis, which by assumption is also a streamline, the steady–flow
energy equation becomes (u 6= 0):
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dr

= −g
r2
0

r2 , (4)

stating that the only agency that reduces h along x = r is the
work done against gravity. This may be integrated to give

h(r) = h(r0) − gr0

(
1− r0

r

)
. (5)

Assume that there is a constriction at the surface of the moon,
so that the flow from a reservoir inside the moon to the outside
passes through a minimum cross sectional flow area. Assume
also that the pressure ratio between the reservoir and the moon’s
surface (pr/p0) is sufficiently large to make the constriction a
sonic throat, so that (a = speed of sound)

u2
0 = a2

∗ =
γp∗
ρ∗

. (6)

Here the asterisk denotes the state at the sonic throat. Equa-
tion (6) identifies the jet speed at the surface (u0) with the sonic
speed within the jet at the throat (a∗). Note that the state at the
throat (p∗,ρ∗) is determined by the isentropic expansion from
the reservoir state (pr,ρr) and is independent of the surface state
(p0,ρ0). Substituting in equation (5) for h(r0) = h∗ from equa-
tion(1), and setting h(r) = 0 at r = ∞ then gives
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(7)
This represents the escape condition at which the jet speed at
the surface is just large enough to overcome gravity. Solving
for this special speed,

u2
0 = u2

eg = 2gr0
γ−1
γ+1

. (8)

The “g” in the subscript “eg” distinguishes ueg as the escape
velocity of a gas, because it is significantly smaller than (γ > 1)
the escape velocity ues =

√
2gr0 of a solid body. The reason

is that the thermal energy of the gas at r = r0 is converted to
ordered kinetic energy in the isentropic expansion of the gas as



it flows to increasing r; isentropic, because dissipative processes
have been excluded by assumption.

When the jet velocity at the surface is smaller than the escape
velocity, u0 < ueg, h→ 0 at a finite value of r, rp, say. Sub-
stituting h(r) = 0 and r = rp in equation (5) and using equa-
tions (6) and (8), the maximum steady–state penetration radius
is obtained:
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. (9)

This may be simplified in the limit when the penetration height
above the surface H is small so that the surface may be consid-
ered to be plane, to

H =
γ+1
γ−1

u2
0

2g
, (10)

which gives the penetration height of volcanoes when H << r0.

The parameter space of the problem may be described by the
formal dependence of any dimensionless quantity Q on dimen-
sionless parameters
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)
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where pr is the reservoir pressure within the moon, ρr is the
corresponding density and r∗ is the radius of the opening at the
surface. This parameter space was systematically explored by
computation using the Euler equation. Figure 1 shows the com-
putational domain at the initial condition. A 600×600 coarse
grid was used with adaptive mesh refinement by a factor of 3
in both directions, so that the effective grid was 1800×1800.
A threshold of the fractional density gradient was used as the
refinement criterion. Solid boundaries are specified by a level
set which is the smallest distance of a field point from the solid
boundary.

An example of the result of a computation is shown in figure 2,
illustrating the shock wave structure and other features of the
flow in the meridional plane.

Figure 3 shows the dependence of the penetration radius on the
velocity ratio for a particular set of parameters. Note that the
computations give a lower value for this than that of the isen-
tropic theory. This is thought to be caused by the entropy in-
crease across the normal shock.

The volcano Tvashtar on Io

The New Horizons mission of NASA obtained a beautiful im-
age of the moon Io of Jupiter in which an eruption of the volcano
Tvashtar is clearly visible, see figure 4. This volcano reaches a
height above the surface of Io of 300 km. With the radius of Io,
this gives rp/r0 = 1.16.

Knowing that the atmosphere of Io is predominantly sulphur
dioxide, we can approximate the behaviour of the gas by putting
γ = 1.25. This would already give us a value of uo/ueg = 0.37
from equation (9), see figure 5, but it is necessary to account
for the deficit due to non-isentropic effects by performing the
appropriate computation.

Points from such computations are also shown in figure 5. Us-
ing these, the value of u0/ueg is seen to be closer to 0.41. Using
ueg = 780 m/s for Io, this result permits us to estimate the sur-
face speed of the jet in Tvashtar to be u0 = 324 m/s with an
estimated error bar of 10%. It also permits the determination
of the temperature of the reservoir from which the jet arises as
Tr = 730 K with an error bar of 20%. Note that, using the escape
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Figure 1: Meridional section through one quadrant of the flow
field around a hollow spherical moon with an opening at a
pole, showing the initial conditions for the computation. The
greyshading is proportional to the magnitude of the fractional
density gradient and illustrates the variation through the (here
isothermal) atmosphere. The plot at the top shows pressure
(heavy line) and density profiles.

Figure 2: Example of results of computation of the flow.
pr/p0 = 60, u0/ueg = 0.837, γ = 1.4, r∗/r0 = 0.1.
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Figure 3: Plot of dimensionless steady–state jet penetration ra-
dius rp/r0 vs. u0/ueg for γ = 1.4, r∗/r0 = 0.1. pr/p0 = 250.
The full line shows the value given by equation (9). The dotted
line indicates results with pr/p0 = 15. The chain-dotted line
indicates the penetration radius of a solid body with the same
surface speed.



Figure 4: Image of the moon Io of Jupiter showing the volcano
Tvashtar near the top. The volcano is probably visible because
of the presence of particulates or of condensation.
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Figure 5: Computation of penetration radius on Io to determine
the surface speed of the volcano Tvashtar. The observed pene-
tration radius ratio is shown as a horizontal line. The full line
is equation (9). The dotted line is a line of best fit through the
computed results and the dash dotted line is the value for a solid
object with the same surface speed.

velocity of a solid object instead of that of a gas would incor-
rectly put these two values at 870 m/s and more than 3000 K!
An example image of such a computation is shown in figure 6.
Clearly the smooth dome shape of the jet at this lower velocity
ratio is very different from the violent features of the image in
figure 2 and quite similar to the image of Tvashtar.

Conclusions

The results of a previous investigation, [1], on the features of
supersonic jets from moons, in which the flow is modelled as
a steady axisymmetric jet of a perfect gas, are reviewed. One
of the conclusions of that work was that the escape velocity of
a gas is much smaller than that of a solid body, because the
thermal energy of the gas at the surface is converted to ordered
kinetic energy in the isentropic expansion of the jet, just as in
a rocket nozzle. A consequence is that, when the surface speed

Figure 6: Image from one of the computations of the volcano
Tvashtar. Note how the structure of this flow differs from cases
with larger u0/ueg such as the one in figure 2. It is like a smooth
dome, similar to that in the image of Tvashtar, figure 4. The
shock waves visible above the dome appear stronger than they
are, because the greyshading is proportional to the fractional
density gradient.

is smaller than the escape velocity, the penetration radius of a
jet is much larger than that of a solid object. The findings are
applied to an image of the volcano Tvashtar on the moon Io of
Jupiter, which rises to a height of 300 km, in order to estimate
the surface speed of the jet of Tvashtar, as well as the tempera-
ture of the reservoir from which it issues. These two values are
much smaller than what one would obtain by incorrectly using
the escape velocity of a solid object.
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