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Abstract 

We show that meaningful turbulence statistics can be obtained 
for gravity currents, in particular turbidity currents, by applying 
streamwise and spanwise spatial averaging over a carefully-
chosen region of the current’s head. The current structure is 
generally depicted as having a compact head, followed by a de-
caying body and an almost non-turbulent tail. Due to the transi-
ent nature of turbidity currents, it is difficult to quantify the tur-
bulence of the inner current, since the inability to calculate tem-
porally averaged statistics prevents the quantification of the 
mass and momentum flux exchanges in this region. For a 
Reb = 60,000 lock-exchange current, we demonstrate that spa-
tial averaged statistics from a single run are consistent with 
those from an ensemble average of 200 runs. Slight discrepan-
cies are observed, showing the limits of the hypothesis of spatial 
homogeneity considered. 

Introduction 

Gravity currents, also known as density-driven flows, are a type 
of flow driven by a density gradient due to the infiltration of a 
dense fluid into a lower density fluid. They are observed in a 
large range of natural physical conditions. They can be induced 
by temperature gradients, as observed in atmospheric flows, or 
caused by in-homogeneities in particle concentrations such as 
pyroclastic flows. Our specific interest is underwater turbidity 
currents, in which the particles tend to naturally settle in addi-
tion to the buoyant motion [1]. 

To date, the behaviour of gravity currents has been thoroughly 
investigated and their general features have been largely ad-
dressed experimentally and numerically for the so-called lock-
exchange configuration (Figure 1). It consists in suddenly re-
leasing a finite or infinite quantity of dense fluid trapped inside 
a tank into a channel filled with a lower density fluid, initially 
separated from the tank by a gate. Comparison of simulation 
results to empirical datasets has demonstrated the ability of Di-
rect Numerical Simulation (DNS) [2-4], Large Eddy Simulation 
(LES) [5-8], and more recently Lattice Boltzmann Models 
(LBM) [9] to accurately predict the turbulent features generat-
ing the mixing dynamics of currents, from low Reynolds num-
ber laminar flows up to highly turbulent laboratory and river 
scale currents. 

 

 
Figure 1. Lock-exchange flume, left (black) the header box, right 
(white) the flume channel. 

Upon the current’s release, the dense fluid starts flowing below 
the ambient fluid, taking the form of a dense head. As the cur-
rent propagates, large Kelvin-Helmholtz billows start detaching 

from the head, causing the entrainment of ambient fluid into the 
current and leaving a large decaying body in the head’s wake 
[8]. The sustainability of the current is intrinsically subjected to 
its ability to hold a coherent dense head over time, and the mix-
ing in the shear layer at the threshold between the two fluids 
plays a key role on the current’s dilution. Several studies have 
focused on the qualitative description of the mixing dynamics 
of gravity currents, based on a description of their vortical tur-
bulent structures [3, 10]. Some attempts have been made to 
quantify the mixing rate. The global current’s dilution is de-
scribed by the evolution of the entrainment parameter E, char-
acterising the expansion of the current’s volume due to the mix-
ing with the ambient fluid [8, 11]. Another measure of mixing 
is obtained numerically by following the dynamic variation of 
the background potential energy Epr [7], as introduced in the 
evolution equation derived by Winters et al. [12]. The reference 
potential energy corresponds to the potential energy attained by 
a fluid at a specific state moved adiabatically to an equilibrium 
state. In other words, Epr is the minimum potential energy level 
attained after the conversion of potential energy into kinetic en-
ergy, and its increase corresponds to the irreversible production 
of potential energy due to diffusive mixing. 

Those quantities only provide information at the global scale of 
the current and the local quantification of the flux exchanges 
are seldom investigated. Indeed, the computation of the turbu-
lence statistics is usually prevented by the transient nature of 
the flow. A first alternative can be found in averaging over a 
large ensemble of simulations, however the prohibitively large 
CPU and storage requirements limits the extension of this 
method to a systematic approach. In the particular case of a hor-
izontal statistically spatial homogeneous body found in infi-
nitely loaded currents, Cantero et al. [13] overcome the averag-
ing limitations by calculating the turbulent statistics using hor-
izontal spatial averaging and the computation costs were re-
duced by computing on a significantly reduced domain, which 
only represented a streamwise section of the current’s body. 
This method has been applied to the study of flux exchanges in 
the body of particle-driven gravity currents [13-15] and the 
study of mixing at the interface of settled particles entrained by 
a turbulent channel flow [16]. 

In order to analyse the local flux exchanges inside a statistically 
evolving current, this study aims to discuss the general distri-
bution of the turbulence statistics inside a gravity current in or-
der to present reliable methodologies for their computation on 
instantaneous fields. To do so, averaging is performed over an 
ensemble of 200 LES simulations of a fully turbulent lock-ex-
change problem. From an analysis of the turbulence statistics in 
the current’s head, a region of pseudo-horizontal homogeneity 
is identified, the statistics for which are compared with those 
obtained by spatial averaging a single instantaneous field. Us-
ing these statistics we introduce a scaling of the mixing layer, 
potentially allowing the analysis of the statistics in a larger sec-
tion of the current. 

  



Problem definition and numerical model 

The 3D model is based on the standard lock-exchange experi-
ment of Wilson et al. [17]. Relative to the channel’s height H, 
the lock and channel’s lengths are taken as Lx,l = 1.933H and 
Lx,c = 16.667H and have a width Lz = 1.333H. The channel has 
a downward 2% slope. The header box is filled with sediment-
laden fluid of density ρ1 and the flume channel is filled with the 
same fluid without sediment of density ρ0. At t = 0, the sedi-
ment-laden fluid is released and the current starts flowing into 
the channel. The problem is described by the continuity and the 
momentum equations together with a transport equation for the 
sediment mass fraction m. The coupling is assured by applying 
the Boussinesq approximation. The equations are presented un-
der their dimensionless form. The scaling quantities are chosen 
to be half of the channel height H/2, the maximum sediment 
mass fraction mmax, the buoyant velocity ub = (H /2) g' with 
the reduced gravity g' = g (ρ1 – ρ0) and the time scale 
t0 = (H /2) /ub. The physical conditions are described by the 
Reynolds number Reb = (ub H /2) / and Schmidt number 

Sc = /. Introducing   as the filter operator, the LES equa-

tions are written as 
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The influence of the eliminated turbulent structures on the re-
solved components remains in the equations through the mo-
mentum and concentration residual-stress tensors ij and i

m. 
The closure is made using an eddy viscosity approach using 
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The subgrid scale viscosity t is modelled using a standard 
Smagorinsky model and a turbulent Schmidt number 
Sct = t/t 0.7 is imposed for the calculation of the subgrid 
scale diffusivity t. 

The simulations are performed using the structured non-stag-
gered Cartesian finite volume SnS code developed by Norris 
[18]. The time step varies to maintain the value of the Courant 
number (CFL = ui t /x) within the range 0.15 – 0.25. The 
simulations were performed on a 1140 × (55 + 37) × 74 mesh. 
A uniform grid spacing  = 0.035 was chosen in each direction 
except near the bottom wall. The first grid size at the bottom 
wall was set to y = 0.00133 to ensure its location in the near-
wall viscous sublayer ( y+ <  5 ). The vertical mesh spacing has 
been progressively increased until reaching y = h over the 
layer 0 < y < 0.667 on 55 cells so the ratio between two consec-
utive vertical mesh size remains in the range [0.85; 1.15] and 
the cell size is kept uniform on the 37 remaining cells. Slip wall 
conditions were imposed at the boundaries except for the bot-
tom boundary which was modelled as a non-slip wall. 

Here, a fully turbulent current of Reb = 60,000 is considered and 
the Schmidt number is set to Sc = 1 [19]. A set of 200 simula-
tions were initialised with a different random velocity inside the 
header box for each run. The results have been extracted during 
the slumping phase of the current’s propagation at t = 29.1. The 
statistics are calculated using a combination of averaging over 
the 200 resulting fields and over the spanwise z-direction of the 

current. The averaging operator is represented by 〈 〉		  whereas a 
“prime” denotes the remaining perturbation. The instantaneous 
data presented are systematically averaged over the z-direction. 

Results and discussion 

Turbulence identification 

The turbulence of gravity currents is mainly confined in the 
layer at the interface with the ambient fluid, also called the mix-
ing layer, and is the location of strong vortical motions (fFigure 
2a-b). The large Kelvin-Helmholtz billows, as well as the 
smaller turbulent structures observed on the instantaneous field, 
are smoothed by the ensemble averaging and are replaced by a 
smooth layer of vorticity. Defining the mixing layer as the re-
gion within which the spanwise vorticity component 〈 〉z  > 0 , 
it is seen to expand inside the current until reaching the bottom 
wall and remains quasi-constant after that point. The vorticity 
is seen to be the strongest at the current’s nose and decays whilst 
moving towards the body. In contrast, the turbulent kinetic en-
ergy k peaks inside the head (Figure 2c) at x = 16.41. Despite a 
slight vertical expansion resulting from the mixing layer’s en-
largement, k exhibits a horizontally pseudo-homogeneous and 
symmetric streamwise layer around this position. Similar fea-
tures are observed for the shear-stresses (not shown).  

 
Figure 2. 2D fields of instantaneous vorticity (a), averaged vorticity (b) 
and turbulence kinetic energy (c). 

Turbulence statistics inside the head 

The identification of the head/body limit of gravity currents is 
not trivial. We will define measures based on the current’s 
height hc, defined as the mean height of the current. 
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Experimentalists and numerical modellers commonly define 
the head-body threshold as the first local minimum of the cur-
rent’s height from the current’s leading edge [20, 21]. Figure 3 
presents the streamwise profiles of the current’s height, super-
imposed with its equivalent for five instantaneous fields. The 
limit of the instantaneous fields’ head matches with a range of 
maximum constant ∂〈 〉hc  /∂x, equivalent to approximately H/4 
in the range 15.85 < x < 16.35. The maximum of turbulence ki-
netic energy is found inside the head, near the threshold with 
the body. The pseudo-homogeneous region lasts approximately 
until xhcm = 17.3, corresponding to the maximum of 〈 〉hc . 

(a) 

(b) 

(c) 



In order to qualify the possible computation of the turbulence 
statistics from spatial averaging, the vertical profiles of the first 
order statistic 〈 〉u  — the averaged streamwise velocity — and 
the second order statistics 〈 〉u'u'  and 〈 〉u'v'  — the streamwise 
velocity perturbation and Reynolds-stress — are presented in 
Figure 4. The profiles are plotted from the ensemble averaged 
flow at xA = 16.41, referred as Axa , along with the profiles av-
eraged over three boxes of length dx = [1; 1.5; 2] and centred 
on xA for the ensemble averaged field, labelled [A1; A1.5; A2], 
and an instantaneous field, referred as [I1; I1.5; I2]. 

 

 
Figure 3. Streamwise profile of 〈 〉hc  (thick line) and its derivative 
∂〈 〉hc  /∂x (+ symbol). Also plotted are five instantaneous profiles of hc 
(fine lines). The body is plotted in plain blue, and the head in red dashed 
lines.  

The statistics exhibit the general features found in regular mix-
ing layers [22]. A sharp quasi constant gradient of mean veloc-
ity connects the constant velocity of the ambient fluid above the 
current and the maximum inside the current. The near-wall flow 
is correctly depicted showing the expected logarithmic expan-
sion after the near-wall viscous region (not shown here). Like-
wise, the statistics show a large peak inside the mixing layer, 
before drastically dropping to 0 above the current and at a 
largely shorter level inside the propagating current. 

Regardless of the length of the averaging area, the profiles ob-
tained from the ensemble averaged fields agree well with the 
profiles Axa, which confirms the pseudo-homogeneous hypoth-
esis. Slight differences are nonetheless observed for 〈 〉u'v' , 
where averaging leads to an under-prediction of the peak’s 
magnitude. Overall, the profiles obtained from the instantane-
ous field also show good agreement with the profiles for case 
Axa. The mean velocity 〈 〉u  is slightly over-predicted at the mix-
ing layer’s thresholds, as well as its gradient inside the mixing 
layer. The profile of 〈 〉u'u'  is reduced at its peak, however the 
values remain qualitatively in the same range of magnitude as 
the other profiles and 〈 〉u'v'  suffer of similar under-predictions 
as profiles A1, A1.5 and A2. Still, case I1 fails to correctly predict 
the positions of the peaks of 〈 〉u'u'  and 〈 〉u'v' , and shows the 
largest over-estimation of the extrema of 〈 〉u , which may be due 
to an insufficient number of points to accurately perform the 
averaging, or the non-symmetry of the data in this region. On 
the contrary, cases I1.5 and I2 show similar performances, de-
spite I1.5 being slightly better on the base of a better estimation 
of 〈 〉u'v'  peak’s magnitude. Consequently, a streamwise averag-
ing box of dx = H /2  leads to qualitatively accurate statistics. 

Scaling of the mixing layer 

Another aspect of the investigation consists of normalising the 
mixing layer by applying a scaling based on the mixing layer’s 
length. As introduced previously, the mixing layer’s length is 

here chosen as the region corresponding to 〈 〉z  > 0. The inner 

boundary is obtained for 〈 〉z  = 0. As the vorticity stays posi-

tive, but converges to 0 above the current, 〈 〉z  < 0.01 is cho-
sen as criterion for the definition of the outer limit of the mixing 
layer, where 〈 〉z  is the vorticity difference between two con-
secutive vertical points. This definition is shown to be more rel-
evant than the commonly used definition based on the integral 
scale of the mean streamwise velocity as it embraces a larger 
area of the swirling motion. 

 
Figure 4. Vertical profiles of mean velocity 〈 〉u  (a), velocity perturba-
tion 〈 〉u'u'  (b) and Reynolds stress 〈 〉u'v'  (c) inside the current’s head. 

(a) 

(b) 

(c) 



Figure 5 presents the evolution of the streamwise velocity per-
turbation inside the normalised mixing layer. Although the tur-
bulence decays inside the current’s body, horizontal homoge-
neity of the velocity perturbation scaled by its vertical maxi-
mum along the current 〈 〉u'u' 	/maxy〈 〉u'u'  is observed for x < xhc

, whereas the scaling quantity maxy〈 〉u'u'  decreases linearly as 
0.006x inside the body. From these observations, further work 
is needed to assess the possibility of computing the vertical pro-
file of 〈 〉u'u'  by scaling the instantaneous field using the linear 
0.006x law and rescaling the values to obtain the magnitude at 
the position desired. The identification of the dependency of the 
linear law’s coefficient on the fluids’ features remains as a topic 
for future investigation.  

 
Figure 5. Streamwise velocity perturbation field 〈 〉u'u'  and scaled 

〈 〉u'u' 	/maxy〈 〉u'u'  in the plane (x; y /lm) inside the mixing layer. 

Conclusions 

A lock-exchange problem, in which a gravity current is gener-
ated by a sudden release of a high density fluid into a channel 
filled with a lower density fluid, has been simulated using a 3D 
LES model with the finite volume code SnS. Very fine particles 
are modelled as a Boussinesq gravity current, in which the mo-
tion is driven by the density gradients inside the fluid. The ho-
mogeneity of the turbulence inside the head is first studied by 
computing the vertical profiles of the turbulence statistics from 
an ensemble average of 200 simulations initialised using differ-
ent random initial velocity distributions. The statistics obtained 
from spatial averaging inside the head of a single simulation are 
consistent with their equivalent statistics obtained from the en-
semble averaged field. 
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