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Abstract

Acoustic fields in a liquid medium can trap and suspend small
particles at their pressure nodes. Recent measurements demon-
strate that nanorods immersed in these fields generate au-
tonomous propulsion, with their direction and speed controlled
by both the particle’s shape and density distribution. In this
talk, we investigate the physical mechanisms underlying this
combined density/shape induced phenomenon by developing a
simple yet rigorous mathematical framework for axisymmetric
particles. This shows that geometric and density asymmetries in
the particle generate axial jets that can produce motion in either
direction, depending on the relative strengths of these asymme-
tries and the acoustic Reynolds number. Strikingly, the propul-
sion direction is found to reverse with increasing frequency, an
effect that is yet to be reported experimentally. The general the-
ory and mechanism described here enable the a priori design
and fabrication of nano-motors in fluid for transport of small-
scale payloads and robotic applications.

Introduction

Synthetic (non-biological) nanoscale motors have been devel-
oped for applications in the biological sciences, including trans-
port of colloidal cargos [12, 18], chemical analysis of pollutants
[5, 9] and detection of DNA and other biological molecules
[16, 3]. These motors can also produce emergent dynamics
when gathered in large ensembles. Swarming and hydrody-
namic synchronisation are but a few of the intriguing dynamics
that occur in these systems [6, 17].

Measurements show that individual nano and micrometre scale
rods can produce autonomous propulsion in acoustic fields [13],
i.e., the particles themselves actively generate their propulsive
motion rather than being moved passively by an external steady
flow. These rods migrate towards a pressure node in a stand-
ing acoustic wave where they subsequently exhibit a variety of
dynamics, including aggregation, random walks and orbital mo-
tion [1, 2, 10, 14, 15]. These motors offer a distinct advantage
over the autonomous motion of catalytic devices because chem-
ical fuels, which are toxic to many biological systems, are not
used. In addition, acoustic fields in the MHz range have been
applied extensively in biologically sensitive environments with
minimal adverse impact [7].

In the above-described measurements, nanorods composed of
a single metal are always observed to move with their con-
cave end leading [13]. More recent measurements [2] show that
shape and density asymmetries can produce competing effects,
with the particle tending to propel itself with its low density and
concave end leading the motion.

In this study, we formulate a general theoretical framework for
this phenomenon that can be used to explain its essential phys-
ical mechanisms [4]. Previously used assumptions of a nearly-
spherical and homogeneous density particle in a low acoustic
Reynolds number flow [8] are relaxed. The developed frame-
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Figure 1: Schematic of acoustic chamber bounded by upper and
lower panels, used to trap particles which exhibit autonomous
propulsion. Particles migrate to the pressure node/velocity
antinode at the chamber.’s centre Inset: Particle motion is gen-
erally decomposed into linear and angular components.

work is applicable to arbitrarily shaped axisymmetric solids
with arbitrary density distributions that are driven at arbitrary
finite frequency. Application to a simple particle, a dumbbell
consisting of two well-separated spheres, is considered allow-
ing the essential physical mechanisms underlying propulsion to
be explored. The general framework is then implemented nu-
merically for asymmetric nanorods that resemble the shape of
the particles reported in measurements. The effects of shape
and density asymmetries are illustrated and discussed.

General Theoretical Framework

A schematic of the measurement protocol of [1, 2, 13] is given
in figure 1. The particle aligns itself perpendicular to this im-
posed flow [2]. The origin of the Cartesian coordinate system is
chosen to be the particle’s geometric centre. The following set
of scales is used: all velocities are scaled by the velocity am-
plitude of the applied oscillatory flow (at the pressure node), U ,
time by the reciprocal of the angular frequency of the imposed
flow, 1/ω, the hydrodynamic length scale is R (radius along the
particle’s minor axis), pressure is scaled by µU/R (for conve-
nience only) and hence force by µUR, where µ is the fluid’s
shear viscosity; the Lagrangian displacement amplitude of the
fluid is a = U/ω. From this point forward, all variables shall
refer to their dimensionless quantities.

The non-dimensional Navier-Stokes equations are

∇ ·u = 0, β
∂u
∂t

+ εβu ·∇u =−∇p+∇
2u, (1)

where u is the velocity field of the fluid, p is the fluid pressure,
t is time, the acoustic Reynolds number is β ≡ ρR2ω/µ, the
dimensionless oscillation amplitude is ε≡ a/R� 1 and ρ is the
fluid density. We use the explicit time dependence, exp(−i t),
for the imposed acoustic velocity, where i is the imaginary unit;
the true velocities of the fluid and particle (as measured) are
specified here by the real part.

The boundary conditions for the fluid velocity are u →
e−it k̂ as |r|→∞, and u=Up on r∈ Sp, where the position vec-
tor, r, is specified in the Cartesian frame of figure 1. Sp denotes



the surface of the particle and Up is the unknown (to be deter-
mined) particle velocity.

Asymptotic expansions of the fluid and particle motion are per-
formed in the small-amplitude parameter, ε, which quantifies
the difference between the Lagrangian and Eulerian accelera-
tions (that generates the particle propulsion), giving,

u = u(0)+ εu(1)+o(ε), (2)

and similarly for p and Up, where the superscripts indicate the
order of each term. The fluid and particle motion in the zero-
amplitude limit are specified by the leading-order terms.

Leading-Order Flow and Particle Motion

The leading-order flow in equation (2), i.e., of O(1), satisfies

∇ · ū(0) = 0, −iβū(0) =−∇p̄(0)+∇
2ū(0), (3)

which are to be solved subject to the far field oscillatory flow
and no-slip at the particle’s surface. Fourier components of all
variables, which depend only on the spatial coordinates and
acoustic Reynolds number – not time – are denoted with an
over-score, e.g., p(0) = p̄(0)e−it .

Due to linearity, the unsteady Stokes solution is at the same
frequency as the far field boundary condition. Given the parti-
cle’s axisymmetry, the corresponding leading-order motion of
the (unrestrained) particle admits the general form,

U(0)
p =

(
W̄p k̂+ Ω̄p r× ĵ

)
e−it , (4)

where the symbols W̄p and Ω̄p denote the linear and angular
rigid-body velocities of the particle about its geometric centre.
Conservation of linear and angular momentum then leads to the
required governing equations [4], which can be readily solved
for W̄p and Ω̄p.

First-Order Flow and Propulsion Velocity

The steady first-order flow, i.e., at O(ε), is incompressible and
satisfies

−∇p̄(1)+∇
2ū(1) =

β

4

(
ū(0) ·∇ū(0)∗+ ū(0)∗ ·∇ū(0)

)
, (5)

where starred quantities denote the complex conjugate. The un-
steady contribution to the first-order velocity field has a time-
averaged value of zero, and is therefore irrelevant to propulsion.

Calculation of the required first-order flow is performed using
the Lorentz reciprocal theorem, employing an auxiliary flow, u′,
of the particle translating with uniform velocity in the direction
its axis is aligned. This gives the required result for the particle’s
propulsion velocity, Uprop =Uprop î, where

Uprop =
β

4Fp

∫ ∫ ∫
V

u′ ·
(

ū(0) ·∇ū(0)∗+ ū(0)∗ ·∇ū(0)
)

dV. (6)

Here, Fp = Fp î is the hydrodynamic drag force on the parti-
cle moving with unitary velocity along its symmetry axis, i.e.,
Up = î. The result in equation (6) provides the generalisation
of that previous result to any axisymmetric particle operating at
arbitrary frequency. The dimensional propulsion velocity of the
particle is

(
a2ω/R

)
Uprop î.

Application to a Dumbbell-Shaped Particle

We now apply the above general theory to a slender axisym-
metric particle and explore the physical mechanisms underlying
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Figure 2: Propulsion velocity of dumbbell-shaped particles as
a function of acoustic Reynolds number of Sphere 1, β1, where
the aspect ratio dependence is scaled out of the solution, i.e.,
Uprop = Ûprop/A. Density of Sphere 1 is held constant (at 10×
the value of the fluid, i.e., γ1 = 10). (a) Densities of the two
spheres are constant and identical. (b) Sizes of both spheres are
held constant with κ≡ R2/R1 = 1.

the particle propulsion observed experimentally in [1, 2, 13].
Density variations and shape asymmetries in the particle are
included. To facilitate analytical solution, while capturing the
dominant features of the reported experiments, a slender dumb-
bell consisting of two rigidly connected spheres of (dimen-
sional) radii R1 and R2 is chosen.

The dumbbell is aligned in the x-direction such that Sphere 2
has a larger x-coordinate relative to Sphere 1; see insets of fig-
ure 2. The chosen length scale for the problem is the radius of
Sphere 1, R1, such that the non-dimensional radius of Sphere 2
is

κ≡ R2

R1
. (7)

The nondimensional densities of Spheres 1 and 2 are

γn ≡
ρn

ρ
, (8)

with n = 1,2 corresponding to the two spheres. The radii of the
spheres are much smaller than their separation, i.e., the aspect
ratio A≡ L/R1� 1, where L is the separation distance between
the centres of the two spheres. This enables independent calcu-
lation of the hydrodynamic loads that they experience, i.e., the
spheres do not interact hydrodynamically.

Spheres of Identical Density

To begin, we consider the case where the dumbbell’s spheres
have identical density, i.e., γ1 = γ2. Figure 2(a) presents nu-
merical results for the propulsion velocity where the radius of
Sphere 1 is held constant and that of Sphere 2 is varied, such
that R2 > R1 (i.e., κ > 1). The density of the spheres is 10×
greater than that of the fluid in this example. Results for other
density ratios show similar trends.

The dumbbell is observed to move with the smaller Sphere
2 leading the motion at low acoustic Reynolds numbers, β1,
whereas the larger Sphere 1 leads at high acoustic Reynolds
numbers; as illustrated in figure 2(a). That is, the motion re-
verses at intermediate acoustic Reynolds number. This be-
haviour is not unexpected because propulsion is driven by a
streaming flow—where flow in the viscous boundary layer is
typically opposite in sign to that far from the surface, as demon-
strated for a sphere executing translational oscillations [11]. In-
creasing β1 decreases the viscous penetration depth and con-
fines vorticity closer to the particle’s surface. As such, the aux-
iliary Stokes field, u′, in equation (6) samples a different region
of the convective body force. We also observe that decreasing
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Figure 3: Phase diagrams of a dumbbell-shaped particle’s
propulsion direction as a function of its density asymmetry and
the acoustic Reynolds number of Sphere 1, β1. Results given
for γ1 = 10. Sphere radius ratios of (a) κ = 0.4, (b) κ = 0.9.

the radius of Sphere 2, i.e., increasing the amount of asymmetry
in the particle, enhances the propulsion velocity.

Each sphere executes translational (in the vertical direction) and
rotational oscillations; the latter being generated by the spheres’
rigid-body coupling. Sphere 2 possesses less inertia than Sphere
1 and thus exhibits a larger vertical velocity amplitude relative
to the fixed Cartesian frame. The leading-order flows of the
spheres do not interact hydrodynamically in the large aspect ra-
tio limit considered here, A� 1, and interaction of their result-
ing (individual) streaming flows does not lead to propulsion at
O(1/A); which is the leading-order scaling behaviour with as-
pect ratio. Propulsive motion of the dumbbell is therefore due
to two independent and tandem sphere “engines” that work co-
operatively to generate propulsion in the same direction.

Spheres of Identical Radii

We study the complementary situation where the dumbbell’s
spheres have identical radii, i.e., κ= 1, but different mass densi-
ties. Figure 2(b) presents numerical results where the density of
Sphere 1 is held constant (10× that of the fluid) and the density
of Sphere 2 is decreased so that γ1 > γ2; results for other density
ratios (between Sphere 1 and the fluid) show similar trends.

It is observed that Sphere 2 leads the motion for low acoustic
Reynolds numbers, β1, i.e., the sphere of smaller density. In
contrast, the sphere of greater density, Sphere 1, leads at high
acoustic Reynolds numbers. The reason for this behaviour is
identical to that given in the previous section. The sphere with
the larger vertical amplitude leads the propulsion at low acous-
tic Reynolds number and the sphere with the smaller vertical
amplitude at high acoustic Reynolds number.

We thus conclude that both density and shape asymmetries gen-
erate propulsion, potentially in opposing directions. Interplay
between these geometric and density effects is now explored.

Combination of density and shape asymmetries

Particle behaviour when combining shape and density asym-
metries is shown in figure 3. The curves in these phase space
diagrams correspond to a propulsion velocity of zero, and delin-
eate regions of different directional motion; these are henceforth
termed “zero-propulsion curves”. The interplay between den-
sity and shape asymmetries is highly nonlinear, which may be
expected because propulsion is generated by a streaming flow.
We find that particles are able to change direction either once or
twice with increasing acoustic Reynolds number, β1, depending
on the relative strength of the shape and density asymmetries.
This feature is not unexpected because the acoustic Reynolds
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Figure 4: Propulsion directions and relative speeds for asym-
metric nanorods operating at β = 0.53. Left-hand column:
hemi-spherically capped nanorods. Right-hand column: hemi-
spheroidally capped nanorods.

number where the particle exhibits a zero-propulsion velocity
can be different for density and shape asymmetries; see figure
2.

This highlights an important design criterion for robust oper-
ation: these nano-motors should be operated far away from
any zero propulsion curve, i.e., either at low or high acoustic
Reynolds numbers and with either a strong shape or density
asymmetry.

Nanorod Propulsion Measurements Reported in [2]

Measurements reported in [2] used nanorods of nominal length
of 2 µm (varying in the range of 1.6-2.6 µm, with an uncer-
tainty of±10%) and a diameter of 300±30 nm. These were per-
formed in an acoustic cell formed from two flat plates, separated
by 180 µm. Water was confined between the plates; temperature
was not reported so we choose a nominal value of 20◦C. The
lower plate was oscillated vertically using a piezoelectric trans-
ducer at 3.77 MHz. The acoustic Reynolds number is therefore
β= 0.53±0.16, based on the reported nanorod radii. That is, all
experiments were conducted close to the theoretically predicted
zero-propulsion point. This complicates a comparison with the-
ory, since the precise particle shapes were not characterised.

We therefore resort to a qualitative comparison, where the parti-
cle ends are modelled as hemi-spheroids. and we systematically
vary the concavity of the ends and change the nature of the den-
sity asymmetries. All calculations are performed numerically in
COMSOL by first computing the leading-order flow, following
which the propulsion velocity is determined using equation (6).

Consider a nanorod with a shape asymmetry defined by hemi-
spherical caps and composed only of Au; see upper left
schematic of particle in figure 4. While [2] report that the con-
cave end always leads the propulsion of a particle composed
of a single material, we find the opposite behaviour: the convex
end leads. Since β= 0.53∼O(1), changes in particle shape can
potentially affect the propulsion direction. This is borne out in
simulations, where increasing the concavity of the ends reverses
the propulsion direction; see upper right schematic in figure 4.

To assess the general trends reported by [2], density asym-
metries are introduced to the homogenous density nanorods
studied above. Replacing the material of the hemi-spherically
capped nanorod with RuAu strongly increases its propulsion
velocity, but with the opposite trend to that reported by [2].
Reversing the composition to AuRu reverses the motion. As
such, the heavy end of the nanorod leads the propulsion di-
rection rather than the light end. In contrast, the nanorod with
large concavity (hemi-spheroidal caps) exhibits the opposite be-
haviour. This is somewhat similar to the general trends de-
scribed by [2], though the enhanced propulsion velocity of the



AuRu nanorod relative to the single material Au nanorod is not
anticipated from experiments.

These simulations show that the trends reported by [2] provide
a small glimpse into the complex behaviour of these nanorods.
Further measurements for a range of shape and density asym-
metries provides an interesting avenue for future work.

Conclusions

We have studied the steady autonomous propulsion generated
by nanorods trapped in an acoustic field. A general theoreti-
cal framework for an arbitrary axisymmetric particle was devel-
oped that enables its propulsion velocity to be calculated from
the unsteady Stokes flow generated by the particle. The parti-
cle can possess both geometric and density asymmetries of an
arbitrary nature and the acoustic field can be operated at any
frequency. This generalises previous work by [8] who studied
nearly-spherical particles with shape asymmetries only that are
driven at low frequency.

This general framework was applied to slender dumbbell-
shaped particles, from which the physical mechanisms were
uncovered. This showed that operation at intermediate acous-
tic Reynolds number, i.e., β ∼ O(1), can lead to propulsion in
either direction which depends sensitively on the particle de-
tails. The general framework was then applied to investigate
the nanorod system studied experimentally by [2]. Simulations
showed that changing the concavity of the model particles that
mimic the structure of the experimental system can dramatically
alter the particle motion. These findings are yet to be reported
in measurements.

This study provides insight into the interplay of density
and shape asymmetries and enables the a priori design and
characterisation of these autonomous acoustic motors.
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