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Abstract 

A preliminary experimental and numerical investigation of a 
buoyancy-driven model was conducted to develop the 
capability to computationally model accelerating bodies and 
predict the associated unsteady motion and hydrodynamic 
loads. The experimental and numerical models, setup and 
methods are described in detail. Additionally, the numerical 
acceleration model is first verified with the classic case of a 
falling sphere, and then validated against experimental data. 
For the buoyancy-driven model, comparison of the 
experimental data to the Computational Fluid Dynamics 
simulation revealed the latter over-predicted the acceleration, 
but overall still exhibited the same behaviour as the 
experiments. Possible sources for the discrepancy are 
discussed. The experimental and numerical results have 
informed future test programs, new buoyancy-driven model 
designs and improved computational methods to further 
develop capability to simulate flows around highly 
accelerating bodies. 

Introduction  

Buoyancy-driven models (BDMs), as their name suggests, are 
models that are propelled through water driven only by their 
buoyancy without any moving mechanical componentry [4]. 
Thus, without motors that are necessary to propel a model or 
generate flows around objects in wind and water tunnels, they 
are ideal for investigating flow noise produced by the BDMs 
themselves once they have attained their terminal velocity [6, 
7]. To maximise the experimental measurement period, BDMs 
achieve their terminal velocity quickly and consequently have 
high accelerations. This makes them equally suitable for 
studying flows around accelerating bodies, such as rockets and 
torpedoes. In particular, the hydrodynamic loads on highly 
accelerating surface and subsurface naval platforms during 
manoeuvres can be significant, and thus their prediction 
important to both the platforms’ performance and structural 
design.  

Experimental results obtained during the acceleration phase of 
a preliminary BDM are presented, along with complementary 
computational results. These experimental results were used to 
provide validation data for the Computational Fluid Dynamics 
(CFD) simulation. 

Experimental Description 

Buoyancy-Driven Model 

The BDM employed in the experiments is shown in figure 1, 
with large white dots on its surface for motion tracking. The 
axisymmetric body had a length of 𝐿 = 430 mm and a semi-
elliptical profile with a maximum diameter of 300 mm located 
150 mm from the tip. Three fins of 50 mm chord and span 
lengths and 30° forward sweep, made from 1 mm thick 
aluminium sheet, were glued to the bottom of the body. A 
sting with 90 mm length and 6.25 mm diameter was screwed 
to the aft end of the body and used to hold the BDM in the 
release mechanism. The BDM total mass (body and sting) was 
measured to be 𝑚 = 0.25 kg ± 0.86% using a Sartorius 
I12000S-X scale. The total volume, computed from CAD 

drawings and measured in a water bucket, was found to be 
𝑉 = 1.49 L ± 1.7%. 

 

Figure 1. The buoyancy-driven model in the Defence Science and 
Technology Group’s Large Water Tank. 

Experimental Setup 

Experimental testing was conducted in the Defence Science 
and Technology Group’s Large Water Tank, which has a 
length, width and depth of 10 m x 10 m x 6 m, respectively. 
The release mechanism for the BDM consisted of two Danfoss 
BG024DS solenoids connected physically in series and 
mounted atop a box. A ring rigged with polystyrene buoys 
floated on the water surface, and suspended the release 
mechanism in the water with three lightweight strings. 

A Photron FASTCAM SA-Z Type 480K monochromatic 
high-speed camera with 1024 px x 1024 px resolution and 12-
bit dynamic range was used with a 50 mm lens to capture the 
motion of the BDM at a recording rate of 1000 Hz. The 
camera was aligned perpendicular to a viewing window at the 
bottom of the tank which had minimal perspective and barrel 
distortion. Calibration of the camera was performed by taking 
images of a graduated vertical pole placed at known locations 
within the tank. 

Experimental Procedure 

For each of the seven experimental runs, the release 
mechanism was first raised to the surface by supplying air 
through a hose to the suspended box. The BDM sting was 
inserted into the solenoids which were subsequently 
magnetised, powered by two 12 V lead-acid car batteries 
connected electrically in series. The release mechanism, 
together with the BDM, was then lowered into the tank by 
venting air from the box to atmosphere through the supply 
hose. After allowing the releasing mechanism, box and 
suspending ring to settle, the BDM was released by cutting 
power to the solenoids. Simultaneously, a 5 V TTL step signal 
was supplied to trigger recording by the camera. 
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Post-Processing 

A calibration transformation matrix was first obtained from 
the calibration images. Then, for each image in every run, two 
of the large white dots were identified, their centroids 
computed, and the calibration transformation matrix applied to 
correct for perspective distortion and scale the pixel location 
to physical location. The displacement of the dots from the 
starting position was subsequently calculated.  

The BDM motion was computed by averaging the 
displacement over all the runs, and then applying a Savitzky–
Golay filter [9] of order 1 and window length of 15. The BDM 
speed was obtained by central differencing the averaged 
displacement, and then applying the same Savitzky–Golay 
filter. The BDM acceleration, 𝑎, was finally calculated by 
central differencing its speed.  

Numerical Simulations 

Computational Domain 

As the BDM, ideally, had a rotational symmetry of order 3 
about its longitudinal axis, only one-third of the BDM was 
modelled as shown in figure 2. The computational domain, 
consisting of an inner and outer domain, extended 10𝐿 
upstream and 20𝐿 downstream of the BDM body and 5𝐿 in the 
radial direction from the longitudinal axis. In the inner 
domain, a structured C-grid type mesh was created to wrap 
around the BDM and was embedded into an H-grid (c.f. figure 
2). The inner domain extended 2𝐿 upstream and 5𝐿 
downstream of the body and 1𝐿 in the radial direction. A non-
conformal (matching) interface joined the inner to the outer 
domain with a 2:1 ratio. The inner domain contained 572, 378 
and 87 grid points in the longitudinal, radial and 
circumferential directions, respectively, and had a first-cell 
wall height that produced a y+ value of O(1) at the end of the 
simulation. The mesh contained a total of 10, 899, 625 cells. 

 

Figure 2. Surface mesh of BDM and symmetry boundaries. 

Numerical Methods 

The Unsteady Reynolds–Averaged Navier–Stokes equations 
were solved with the k–ω Shear Stress Transport turbulence 
model using ANSYS Fluent. The PISO algorithm was used to 
couple the pressure and velocity, and a second-order upwind 
scheme to spatially discretise all advection terms. The gradient 
terms were discretised and pressure interpolation carried out 

with the Green–Gauss Cell-Based and second order methods, 
respectively, while temporal discretisation was achieved with 
a second-order implicit scheme with a constant timestep of 
Δ𝑡 = 1.0 ms. 

Boundary and Initial Conditions 

The inlet and outlet boundaries were set as a pressure inlet and 
pressure outlet, respectively. The BDM body and sting were 
specified as no-slip walls, and symmetry boundary conditions 
set elsewhere. Due to the favourable pressure gradient over the 
forward portion of the BDM and small Reynolds number 
during the initial motion, a laminar zone was specified on the 
body between 0 ≤ 𝑧/𝐿 ≤ 0.384, where 𝑧 is the distance from 
the BDM nose and aligned with the longitudinal axis. The 
turbulent intensity was set to 2%, turbulent viscosity ratio to 4, 
gravitational acceleration to 𝑔 = 9.81 m/s2, water density to 
𝜌 = 1000 kg/m3 and water dynamic viscosity to 
𝜇 = 1.003 × 10-3 kg/ms. The flow was initialised as 
motionless. 

Acceleration Model 

To model the accelerating motion of the BDM, mesh motion 
was applied to the entire computational domain and controlled 
through a User Defined Function (UDF) that specified the 
mesh velocity, 𝑤. For the computed motion, a 1 degree-of-
freedom (DOF) solver was employed to obtain the BDM 
acceleration: 

∑𝐹௭ ൌ 𝐵 െ𝑊 െ 𝑅 ൌ 𝑚𝑎௭                       (1) 

where 𝐵 ൌ 𝜌𝑉𝑔 is the buoyancy, 𝑊 ൌ 𝑚𝑔 the BDM weight, 
and 𝑅 ൌ 𝐹஽ ൅ 𝐹஺ெ ൅ 𝐹஻ the fluid resistance.  The fluid 
resistance is composed of the drag, 𝐹஽ ൌ 𝜌𝑤ଶ𝑆𝐶஽/2, added 
mass, 𝐹஺ெ ൌ 𝐶஺ெ𝜌𝑉𝑎௭, and Basset, 𝐹஻, forces, where 𝑆 is the 
cross-sectional area, 𝐶஽ the drag coefficient, and 𝐶஺ெ the 
added mass coefficient. The mesh velocity required for the 
UDF was obtained by numerically integrating the acceleration 
using the Forward Euler method: 

𝑤௡ାଵ ൌ 𝑤௡ ൅ 𝑎௭௡Δ𝑡                             (2) 

where the superscripts 𝑛 and 𝑛 ൅ 1 are the values at the 
current and next timestep, respectively. 

Timestep and Grid Independence 

Timestep and grid dependence were investigated by halving 
both the timestep and the cells in the vicinity of the BDM in 
all three spatial dimensions using Fluent mesh adaption. The 
maximum instantaneous change in the BDM displacement, 
speed and acceleration after the initial oscillations had settled 
were 0.15%, 0.75% and 1%, respectively. The results from the 
original (coarser) mesh and timestep are therefore presented. 

Verification of 1-DOF Solver UDF 

To verify the 1-DOF solver UDF and its implementation in 
Fluent, two cases of a 𝐷 = 0.1 m diameter and 1750 kg/m3 
dense falling sphere accelerating under gravity from rest 
through quiescent, inviscid water were considered: the first 
without any retardation force, and the second with an artificial 
retardation force. The Basset-Boussinesq-Oseen equation [2, 
5, 10] is typically used to describe the motion of a falling 
sphere, and is identical to equation (1) but with the buoyancy 
and weight terms having opposite signs. For these simulations, 
a structured O-grid was created around the sphere with 103 
and 241 grid points in the radial and circumferential 
directions, respectively. The 40𝐷 diameter spherical 
computational domain modelled only a quarter of the sphere. 
The first-cell wall height produced a y+ value of O(1) at the 



sphere’s terminal velocity of 1.4 m/s in the second verification 
case. 

For the special case where 𝜇 = 0 and a sphere accelerates 
through inviscid flow in the absence of any retardation force, 
𝑅 ൌ 𝐹஺ெ and the sphere undergoes a constant acceleration 
without achieving a terminal velocity. This was the first 
verification case considered. In this simulation, the pressure 
force on the sphere represented only the added mass force and 
was included in the 1-DOF solver. The computed constant 
acceleration corresponded to an added mass coefficient of 
𝐶஺ெ = 0.5006. This was very close to the theoretical added 
mass coefficient for an accelerating sphere in potential flow of 
𝐶஺ெ,௧௛௘௢௥௘௧௜௖௔௟ = 0.5 [1]. 

The second case verified the 1-DOF solver UDF and its 
implementation in Fluent against the analytical solution of 
Guo [3] with 𝐶஽ = 0.5 and 𝐶஺ெ = 1. Thus, an artificial 
retardation force was applied through the drag force term of 
equation (1) and was proportional to the sphere’s velocity. 
Furthermore, specifying the above drag and added mass 
coefficients nominally accounted for the drag and added mass 
forces in equation (1). Consequently, in this simulation, the 
pressure force on the sphere calculated by Fluent was 
excluded from the 1-DOF solver. The computed motion of the 
sphere matched Guo’s analytical solution. 

Validation 

Similar to the verification cases above, validation of the 1-
DOF solver UDF in Fluent was performed by numerically 
simulating the falling sphere of Moorman [8] and comparing 
the results to his experimental data. Briefly, the experiment 
involved a 𝐷 = 0.0127 mm diameter and 7780.22 kg/m3 dense 
sphere falling from rest in oil with a density of 876.144 kg/m3 
and a kinematic viscosity of 1.078×10-5 m2/s. The mesh used 
was the same as that for the verification cases but scaled down 
to the appropriate size. Figure 3 shows the velocity of the 
falling sphere against its displacement as measured by 
Moorman with black markers, and as computed from the CFD 
simulation in red. Overall, the numerical result agrees well 
with Moorman’s experimental data. The slight over-prediction 
in velocity may be due to the first-order Forward Euler 
method used (see equation (2)) to numerically integrate the 
acceleration to obtain the velocity. 

 

Figure 3. Velocity–displacement relationship of falling sphere from 
experiments by Moorman [8] (black) and CFD simulation (red). 

Results & Discussion 

The experimental BDM acceleration calculated from the high-
speed camera images is shown in black in figure 4. The figure 
reveals the BDM accelerated, unexpectedly, slowly at the 

beginning of its motion and, instead of at the instant of its 
release, achieved its maximum acceleration of approximately 
𝑎 ≈ 26.5 m/s2 around 𝑡 ≈ 0.095 s. This was also the time at 
which the BDM had moved the length of its sting and cleared 
the release mechanism. Consequently, the slow initial 
acceleration, 𝑡 < 0.03 s, was primarily attributed to the release 
mechanism. It was believed that friction and/or eddy currents 
between the BDM’s sting and the release mechanism 
solenoids decreased the initial acceleration. Tests of other 
buoyancy-driven models, not reported here, supported this 
hypothesis. These models also exhibited slow accelerations 
after being released, and achieved their maximum acceleration 
at approximately the time at which their sting had cleared the 
release mechanism. 

 

 

Figure 4. Acceleration time-history of the BDM from experiments 
(black) and CFD simulation (red). Dashed line indicates time at which 
the BDM sting cleared the release mechanism solenoids. 

After the BDM had cleared the release mechanism and 
attained its maximum acceleration, its acceleration slowly 
decreased to approximately 𝑎 ≈ 8 m/s2 at 𝑡 = 0.331 s, after 
which it moved out of the camera’s field of view. 

For the CFD simulations, the BDM motion was initially 
prescribed according to the experimental data as the retarding 
frictional and/or electromagnetic effects between the sting and 
release mechanism solenoids were not modelled. This enabled 
the flow to develop in a manner similar to the experiments 
during the initial motion. Once the sting had cleared the 
release mechanism, 𝑡 > 0.092 s, the BDM motion was then 
computed using the 1-DOF solver UDF described earlier. The 
periods of prescribed and computed motion are shown at the 
top of figure 4. 

The acceleration calculated from the CFD simulation is shown 
in red in figure 4. As expected, the acceleration was identical 
to that in the experiments during the prescribed period. 
However, the acceleration suddenly and discontinuously 
increased from 𝑎௭ ≈ 26.5 m/s2 to 30.5 m/s2 when the BDM 
motion was switched from prescribed to computed at 
𝑡 = 0.093 s. The BDM acceleration subsequently decreased 
slowly, at a similar rate to the experiments, for the remainder 
of the computed motion. 

The lesser acceleration calculated from the experimental high-
speed camera images compared to the CFD simulation was 
attributed, mainly, to the experimental model having a 
significant degree of asymmetry. In the CFD simulation, the 
BDM had perfect rotational symmetry of order 3 and moved 
vertically upwards. In the experiments, however, the sting was 
misaligned with the body. Additionally, the manufacture and 



attachment of the fins was imprecise. Close inspection of the 
BDM revealed one of the fins had a slight curvature (i.e. 
camber) and another was not parallel to the BDM longitudinal 
axis (i.e. had a small angle of incidence). These irregularities 
caused the BDM to “kick” sideways; to the left in figure 1. 
This sideways motion would have generated extra drag and, 
consequently, reduced the acceleration. 

The reduced acceleration in the experiments may also be 
attributed to the experimental model having a non-
hydrodynamically smooth surface. The BDM had a battered 
surface as a result of it exiting the Large Water Tank at its 
terminal velocity of approximately 8 m/s and impacting hard 
surfaces. This damage, along with the experimental model’s 
inherent surface roughness of approximately 2.5 µm, would 
have increased the drag and decreased the measured 
acceleration, compared to the CFD simulation which modelled 
an intact and hydrodynamically smooth surface. 

Finally, some of the discrepancy in acceleration between the 
CFD simulation and experiment may also be attributed to the 
1-DOF solver itself. Similarly to the over-predicted velocity of 
Moorman’s sphere shown in figure 3, the first-order Forward 
Euler method used in the 1-DOF solver would have over-
predicted the acceleration in the simulation compared to the 
experiments. 

Conclusions 

Experimental and complementary numerical results of a 
preliminary investigation into the acceleration of a BDM are 
reported in this paper.  

Experiments were conducted in the Defence Science and 
Technology’s Large Water Tank, and a high-speed camera 
was used to track the BDM position. The BDM was found to 
initially accelerate slowly. It attained its maximum 
acceleration after its sting had cleared the release mechanism, 
after which its acceleration slowly decreased. The slow initial 
acceleration was attributed to friction and/or residual magnetic 
fields between the sting and release mechanism solenoids. A 
CFD simulation of the experiment was performed using 
Fluent. The BDM motion was incorporated by rigidly moving 
the entire computational domain. The velocity of the domain 
was controlled through a 1-DOF solver UDF. The motion was 
initially prescribed, as the frictional and electromagnetic 
effects were not modelled, before the 1-DOF solver was 
enabled. While the acceleration was greater than the 
experiments during the period of computed motion, the 
acceleration overall exhibited the same behaviour as the 
experiment and slowly decreased. The discrepancy between 
the experiments and CFD simulation was attributed to the 
experimental model containing a significant degree of 
asymmetry due to its manufacture and having a rough, 
battered surface, and to the first-order Forward Euler 
numerical integration method used in the 1-DOF solver. 

The results have demonstrated that the present numerical 
methodology of moving the entire computational domain 
combined with a 1-DOF solver UDF can be utilised to specify 
rigid body motion and simulate flows around highly 
accelerating bodies. 

The experimental and numerical techniques employed in this 
preliminary investigation are being further developed. A new 
buoyancy-driven model has been designed with a well-defined 
cylindrical body and NACA profile fins. This model is 
currently being manufactured. It will also be instrumented 
with inertial measurement units to complement the high-speed 
camera images. Additionally, a new release mechanism has 
been designed and manufactured that eliminates the frictional 
and electromagnetic effects that were present in the current 
solenoid-based release mechanism. Finally, a higher-order 
numerical integration method is being implemented in the 1-
DOF solver UDF to enhance the accuracy of the motion 
predicted in future CFD simulations. 

The ongoing complementary experimental and numerical 
investigation of buoyancy-driven models will allow improved 
validation and better understanding of flows around highly 
accelerating bodies. This is important to characterise the 
hydrodynamic loads and performance of naval platforms 
performing manoeuvres. 

Acknowledgments 

The authors would like to thank Mr B. Crowley from QinetiQ 
for providing expertise with the high-speed camera and 
assisting with the experiments. 

References 

[1] Brennen, C.E. (1982). A Review of Added Mass and 
Fluid Inertial Forces. Port Hueneme, CA, Naval Civil 
Engineering Laboratory. 

[2] Chang, T.J. and Yen, B.C., Gravitational Fall Velocity of 
Sphere in Viscous Fluid, Journal of Engineering 
Mechanics, 124, 1998, 1193-1199. 

[3] Guo, J., Motion of Spheres Falling through Fluids, 
Journal of Hydraulic Research, 49, 2011, 32-41. 

[4] Haddle, G.P. and Skudrzyk, E.J., The Physics of Flow 
Noise, Journal of the Acoustical Society of America, 46, 
1969, 130-157. 

[5] Jalaal, M., Ganji, D.D. and Ahmadi, G., Analytical 
Investigation on Acceleration Motion of a Vertically 
Falling Spherical Particle in Incompressible Newtonian 
Media, Advanced Powder Technology, 21, 2010, 298-
304. 

[6] Kudashev, E.B., Experimental Studies of Flow Noise 
around a Surfacing Device, Acoustical Physics, 51, 2005, 
414-424. 

[7] Kudashev, E.B., Kolyshnitsyn, V.A., Marshov, V.P., 
Tkachenko, V.M. and Tsvetkov, A.M., Experimental 
Simulation of Hydrodynamic Flow Noises in an 
Autonomous Marine Laboratory, Acoustical Physics, 59, 
2013, 187-196. 

[8] Moorman, R.W., Motion of a Spherical Particle in the 
Accelerated Portion of Free Fall, PhD Thesis, 
Department of Mechanics and Hydraulics, University of 
Iowa, 1955. 

[9] Orfanidis, S.J., Introduction to Signal Processing, 
Englewood Cliffs, NJ, Pearson Education, 1996. 

[10] Pantaleone, J. and Messer, J., The Added Mass of a 
Spherical Projectile, American Journal of Physics, 79, 
2011, 1202-1210. 

 
 


