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Abstract 

There is an increase in demand for renewable sources of energy 

due to apprehensions about climate change, increase in the 

energy demand and unpredictability of the prices and supply of 

fossil fuels. Wind energy is one of the world’s fastest growing 

sources of energy. As a result of the stochastic behavior of 

wind, the demand for accurate wind forecasting has become 

imperative to reduce the risk of uncertainty. 

In this paper, the wind speed data are modelled and forecasted 

using three forecasting techniques: Multiple Linear Regression 

(MLR), Autoregressive Integrated Moving Average (ARIMA) 

and Artificial Neural Network (ANN). To test these models for 

wind speed forecasting, daily wind speed, pressure, relative 

humidity and temperature data for the period of September 

2012 to September 2013 for Abaiang in Kiribati were used in 

this work. The performance of the models was evaluated using 

four measures: root mean square error, mean absolute error, 

mean absolute percentage error and coefficient of determination 
(R2). The optimum model was also compared to a benchmark 

technique, persistence method. The empirical results reveal that 

the proposed model using Artificial Neural Network is more 

efficient and accurate in forecasting wind speed in comparison 

to the regression and time series models.  

Introduction  

The energy sector encompasses approximately two-thirds of 

global total greenhouse gas emissions which contribute to the 

climate change phenomena that has become a global concern 

[8]. While climate change causation is global, some regions are 

being affected more than others. Pacific islands countries (PIC), 

particularly those in warmer regions, are the most susceptible 

to its effects [10]. The contribution of the PICs is below 0.03% 

of current global greenhouse gas emissions according to UN 

Permanent Forum on Indigenous Issues [10], yet they are 

among the first to be affected and it is projected that their 

populations will be among the first that will need to adapt to 

climate change or be subjected to relocation and abandonment 

of their traditional homelands. Island states such as Kiribati that 

are only slightly above sea level are the immediate victims of 

this phenomenon. 

The Republic of Kiribati (pronounced Kiribas) formerly known 

as the Gilbert Islands, is located in the center of the Pacific. The 

nation consists of 33 small islands divided into three distinct 

archipelagos: Gilbert Islands, Phoenix Islands and Line Islands. 

All 33 islands are low-lying atolls or reef-top islands except 

Banaba, which is a raised atoll west of the Gilberts [11].   

Renewable energy resources are being increasingly capitalized 

on to provide greenhouse gas emission-free sources of 

electricity in order to lessen the effect on climate change. Wind 

energy has become the world’s fastest growing renewable 

energy source of electricity generation because as described by 

Li and Shi [6] wind energy is “socially beneficial, economically 

competitive, and environmentally friendly” (p. 2313). 

Compared with fossil fuels, wind energy has its unique 

characteristics such as low energy density, randomness, 

instability and volatility, rapid changes in wind direction and 

magnitude, and is easily influenced by the geographical 

conditions and the surrounding environment [12]. The 

abundance of wind energy does not compensate for its 

stochastic behaviour. Forecasting is a necessity to decrease the 

risk of ambiguity and allowing better incorporation of wind 

energy into power systems [2].  

Considerable research efforts have been directed at developing 

superior forecasting methods. The most common methods for 

forecasting wind speed include: Persistence Approach, Physical 

Approach, Statistical Approach and Hybrid Approach.  

Persistence Approach assumes that the wind speed at a certain 

time in the future will be the same when the forecast is made 

and is normally utilized as a benchmark for comparing other 

short-term wind speed forecast tools [13]. Physical Approaches   

like Numeric Weather Prediction (NWP) use parameterizations 

stemming from a comprehensive description of the physicality 

of the atmosphere such as terrain, obstacle, pressure, and 

temperature to estimate the future wind speed [3,12]. Statistical 

Approaches such as Time-Series models, Regression models 
and Artificial Neural Networks are based on training with data 

measured and utilizes errors to adjust the parameters of the 

model [2]. Hybrid Approach generally combines different 

method e.g. combining physical and statistical approaches 

while maintaining the strength of each method to enhance the 

performance of the forecasting model [5,13].  

Selecting appropriate input variables is essential in building an 

effective forecasting model. Different variables are required for 

different models. Physical models use physical considerations 

to forecast wind speed, therefore the input variables will be the 

physical or meteorological information while Statistical models 

use historical wind speed data and NWP output as input. 

Understanding the importance and relevance of the parameters 

that affect wind speed is important when choosing inputs. Wind 

speed, relative humidity, power generation hours, mean 

temperature, wind gust, wind direction and barometric pressure 

have been used as inputs. Once a strong correlation between 

wind speed and other variables is established, these variables 

can be used along with wind speed as inputs in order to help in 

the prediction of wind speed. Statistical method is cost effective 

and the technique is generally selected for short term forecast. 

Multiple Linear Regression (MLR), Autoregressive Integrated 

Moving Average (ARIMA) and Artificial Neural Networks 

(ANN) are the three statistical methods modelled in this 

research.  

Statistical Models 

Multiple Linear Regression (MLR) 

The multiple linear regression (MLR) model is defined by 

0 1 1 2 2 ... k ky x x x                         (1) 



where y is the dependent variable wind speed, ;( 1,2,..., )ix i k  

are the predictor variables, and 0 1, ,..., k    are regression 

coefficients, k is the number of predictor variables  and   is the 

vector of residuals. The model assumes that the residuals are 

normally distributed with mean zero and variance is constant. 

 

Once the model has been established, the assumptions are tested 

to determine the robustness of the model. Linearity was 

assessed graphically using Residuals versus Predicted plot, 

independence was assessed using Durbin-Waston test, 

normality was assessed graphically through the Q-Q Plot and 

Shapiro-Wilk test and homoscedasticity was determined using 

Heteroskedacity Test and graphical plots of residuals versus 

each independent variable. 

Autoregressive Integrated Moving Average (ARIMA) 

The Box and Jenkins iterative procedure for modeling a time 

series was used as postulated by [1,7]. This iterative modeling 

approach encompasses three phases:  

i) Identification, in which the characteristics and statistics of 

a time series are examined. ARIMA models require the 

input data to have a constant mean, variance, and 

autocorrelation through time. The stationarity of the input 

data series is determined via the autocorrelation function 

(ACF) and Partial Autocorrelation (PACF) tests. The unit 

root test can also be used to determine stationarity. 
 

ii) Estimation, in which we estimate the parameters of 

potential model(s) using the data at hand.  
 

iii) Diagnostic checking, in which we examine the estimated 

model(s), and residuals of the fitted model(s), to see if the 

model(s) make sense and are in agreement with our 

assumptions. 

The general non-seasonal model is also known as ARIMA (p, 

d, q), where p is the order of the autoregressive part of the 

model, d is the order of differencing done to the data to make it 

stationary and q is the order of the moving average part of the 

model. 

The ARIMA model is defined by: 
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where i  is the ith autoregressive parameter, j  is the jth 

moving average parameter and t  is the error term at time t. 

Artificial neural network (ANN) 

The ANN model designed is a multi-layered perception (MLP). 

The proposed model considers the most widely used neural 

network, known as the back propagation network. The 

necessary components needed to establish a neural network is 

outlined by Cadenas and Rivera [1] as follows: 

i) Its architecture (the number of layers and units in the 

network and connections among them). An ANN is 

typically composed of layers of nodes. Most applications 

need networks that contain three or more layers – input, 

hidden, and output. In the MLP, all input nodes are in one 

input layer, all output nodes are in one output layer and the 

hidden nodes are distributed into one or more hidden layers. 
 

ii) The activation function (that describes as each unit 

combines its inputs to obtain the desired outputs). The 

activation functions below are used in this research to 

determine which would produce optimal results: 

a) Sigmoid (logistics) function  
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b) Cosine function 

( ) cos( )f x x  

c) Sine function 
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d) Tangent hyperbolic function 
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iii) The cost function (a measurement of the accuracy of the 

prediction). Typically, Sum Squared Error, 

 
2

1

n

tt
SSE E


 , and Mean Squared Error, 

 
2

1

n

tt
MSE E n


  are used since they are defined in 

terms of error, ˆ
t t tE y y  , in the output and the hidden 

layers, where ˆ
ty is the final output at an output layer, 

ty is 

the actual value of the output node for the t th  observation 

( 1,2,...,t n ). This is important because optimality of 

model is defined by least error. In this research, the SSE is 

utilized. 
 

iv) The training algorithm to find the values of the parameters 

that diminish the cost function. The application algorithm 

for backpropagation, outlined below, is by Sivanandam & 

Deepa [9] as:  
 

Step 1: Initialize weights (from training algorithm)  

Step 2: For each input vector do steps 3-5.  

Step 3: For i = 1,…n; set activation of input unit, xi; 

Step 4: For j = 1,…p; 
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where x is the input training vector, jz  is the hidden unit 

j, ojv  is the bias on hidden unit j, ok
w  is the bias on output 

unit k and k
y  is the output unit k.  

 

Model Evaluation 

The development of every model requires comparisons with 

other models to distinguish accuracy and superiority. While the 

accuracy of forecasting is important, the measures for the 

evaluation of forecasting models are also important. A number 

of performance measures have been used to evaluate the 

forecast accuracy, but there is still a debate on which is best or 

which is recognized as the universal standard. According to 

Hyndman and Koehler [4] many of the recommended measures 

were found to be inadequate, and many of them degenerate in 

commonly occurring situations suggesting that Mean Square 

Error and Root Mean Square Error are largely used because of 

their theoretical relevance in statistical modelling; however 

authors have dissuaded the use because they are more sensitive 

to outliers. To quantitatively determine the optimal model, three 

forecast error measures are employed for model comparison 

and evaluation: Mean Absolute Percentage Error (MAPE), 

Root Mean Square Error (RMSE) and Mean Absolute Error 

(MAE).  

Error measures can be defined as: 
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ii) RMSE = 
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where: 𝑥(𝑡): actual data at time t, 𝑓(𝑡):  the estimate of forecast 

of time 𝑡 and 𝑒(𝑡): predicted error at time 𝑡, 𝑒(𝑡) = 𝑥(𝑡) −
𝑓(𝑡).  
 

The fitness of data will be measured using the Coefficient of 

determination: 
2R =    1 SSE SST                             (9) 

where SSE(Sum of Squares due to error and SST is the total 

sum squares. 

 

Data measurement, Inputs and Parameter 

The data used herein were provided by the University of the 

South Pacific, Engineering Department. Measurements were 

performed at a height of 34 m above ground level over a period 

of approximately 1 year; from September 2012 to September 

2013 on the island of Abaiang in Kiribati. The data sampling 

interval was 10 minutes. Table 1 shows the variables measured 

and used in this study and Figure 1 illustrates the time series 

plots of the daily wind speeds. 

Variables Units 

Wind speed m/s 

Direction Deg 

Temperature Deg C 

Humidity %RH 

Pressure mBar 

Table 1. List of Parameters. 

Variable selection is dependent on recognizing relationships 

within the data that are suitable predictors of the model output. 

Pearson’s Correlation defined by:  
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was used to identify useful explanatory variables, that is, 

variables showing significant correlation with wind speed. 

Results presented in Table 2 show that pressure, direction and 

humidity are statistically significant predictor variables for the 

development of the wind speed forecasting models. 

 

The dataset was further divided into three subsets: training, 

validation, and testing datasets. The data contains 365 

observations for each variable of which 292 observations (80%) 

were used for training the models and the remaining 20% was 

divided in validating and testing sets with 37 and 36 

observations respectively. 
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Figure 1. Time series plot of Abaiang’s wind speed. 

 

 
**Correlation is significant at the 0.01 level (2-tailed). 

Table 2. Correlation Analysis of Abaiang Input Data. 

The Artificial Neural Network requires additional pre-

processing in the form of normalization. The normalization 

measure is defined as: 

min
{ } 2 1

max min

i i

i

i i

X X
X X

X X
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where 1,2,..., and [ 1,1]i n X    , min Xi and max Xi are the 

minimum and maximum value of the input array and Xi denotes 

the real value of each vector. 

Results and Discussion 

The parameters of the best model for each forecasting method 

are shown in Table 3. Figures 2, 3 and 4 depict the actual, 

predicted and residual wind speed values of daily average for 

MLR, ARIMA and ANN models respectively. It can be seen 

that all the models capture a similar tendency of the actual data. 

Model Parameter 

 MLR  3 lags, direction, relative humidity, pressure 

 ARIMA  Autoregressive model of order p = 3, degree of 

differencing d = 0 and moving-average model 

of order q =3, that is ARIMA(3,0,3). 

 ANN  6 inputs variables (4 lags, direction, relative 

humidity), 2 hidden nodes and 1 output node 

with Sigmoid activation function. 

Table 3. Parameters of MRL, ARIMA and ANN. 

 

 

 

 

 
 

Figure 2. Actual, predicted and residual wind speed values for MLR 

training sample. 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
Figure 3. Actual, predicted and residual wind speed values for 

ARIMA training sample. 

 
 

 Speed Direction Temperature Humidity Pressure 

Speed 1 -0.452** -0.020 0.178** -0.357** 

Direction -0.452** 1 -0.141 -0.290** 0.036 

Temperature -0.020 -0.141 1 -0.041 0.000 

Humidity 0.178** -0.290** -0.041 1 0.390** 

Pressure -0.357** 0.036 0.000 0.390** 1 
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Figure 4. Actual, predicted and residual wind speed values for ANN 
training sample. 
 

From the results, it can be seen that the models trained with 

varying parameter inputs result in varying degrees of accuracy. 

The training and validation sets were used to construct and 

identify the optimum model for each forecasting type. The 

validation set was particularly significant for the ANN model 

construction to avoid overfitting.  
 

The models further undergo a comparative analysis to identify 

which forecasting technique gives superior forecasting of 

Abaiang by comparing with a benchmark technique, 

persistence method. The test dataset was used for this process. 

The use of the test set is crucial because it was not used in the 

model fitting which permits genuine forecasts [1]. Figure 5 

compares the actual and 36 days predicted values obtained by 

using the MLR, ARIMA, ANN and Persistence models 

respectively. It can be seen that all the models capture a similar 

tendency of the actual data. Table 3 shows the statistical error 

measures: RMSE, MAE, MAPE and variation of data capture 

measure R2 for the MLR, ARIMA, ANN and Persistence 

models. It can be observed that the error values obtained with 

the ANN model are considerably lower than other models and 

the R2 is also the highest for ANN. 

 

Figure 5. Actual, MLR, ARIMA, ANN and Persistence predicted test 
values. 

Table 3. Statistical error measures for MLR, ARIMA, ANN and 

Persistence models of test set. 

Conclusions 

Wind energy is one of the world’s fastest growing sources of 

energy. Improving forecasting accuracy is crucial in superior 

forecasting. Some researchers model hybrids, while others 

enhance and improve forecasts by including explanatory 

variables. The latter was used in this study to encompass wind 

speed wholly; therefore, it was important to include those 

external variables that affect wind speed. Lag wind speed, 

direction and humidity were identified as relevant variables for 

forecasting. Three forecasting techniques, namely Multiple 

Linear Regression (MLR), Autoregressive Integrated Moving 

Average (ARIMA) and Artificial Neural Network (ANN) were 

employed to forecast the wind for a period of 36 days and 

compared with the actual data. The results showed that the three 

models reasonably forecasted Abaiang’s wind speed in 

comparison to Persistence model (benchmark) with ANN 

predicting with a higher degree of accuracy. With this 

technique, the R2 value was the highest and the error parameters 

RMSE, MAE and MAPE were the lowest. 
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Forecast Model RMSE MAE MAPE R2 

MLR 31 1.5439 1.2726 34.4138 0.4047 

ARIMA (3, 0, 3) 1.5649 1.3162 39.5564 0.5117 

ANN (6, 2, 1) 1.4822 1.1863 29.7312 0.5505 

Persistence 1.6973 1.3451 34.5891 0.4281 
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