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Abstract

Feedback control of vortex shedding behind a 2D cylinder at
low Reynolds numbers is investigated using a resolvent ap-
proach. This work presents an efficient modelling approach
by capturing the input-output dynamics of an incompressibl
flow from the resolvent operator (i.e. the frequency resppns
of the linearized Navier-Stokes equations. The difficulfy o
applying modern control design techniques to complex, -high
dimensional flow systems is overcome by exploiting low-orde
models identified from frequency responses. We design aptim
control laws by applyingi. loop shaping to the low-order mod-
els for a range of Reynolds numbers. Two single-input single
output control arrangements are examined. The first setup is
a velocity measurement in the cylinder wake to drive a pair
of body forces located near the separation points. Complete
suppression of shedding is observed ufRo= 110. We also
observe a fundamental trade-off: the sensor should be close
enough to the cylinder to reduce the excessive time lag, but
it should be kept sufficiently far from the cylinder to measur
unstable eigenmodes developed downstream. These two con-
flicting requirements become more difficult to satisfy fagler
Reynolds numbers. The second setup utilises cylinder &fa-m
surement to oscillate the cylinder. We observe that corfirol

this arrangement is more challenging, with complete sugpre
sion of vortex shedding achieved only upRe= 60. The rea-
sons for the difficulty of control for these two control argen
ments are discussed.

Introduction

The flow around a bluff body becomes unstable above the crit-
ical Reynolds number and results in alternate vortex-sihgdd

It gives rise to strong force fluctuations which are respaesi
for structural vibrations, acoustic noise and resonancanyM
efforts have been made to suppress vortex shedding [2, 9]. In
the past, passive control has received considerable iattehie

to the simplicity of its practical implementation. A simpteod-
ification of the geometry or structural additions can be used
affect the flow beneficially. Another way to alter a flow is in-
troducing powered actuators and injecting energy in a bensi
way. This is called active open-loop control, which opesate
according to pre-defined laws and shows poor robustness.

A more robust and efficient way to control the flow is active
closed-loop control or feedback control, which comprisas-a
ators operating according to the feedback signals proviged
sensors. Unexpected disturbances or uncertainties inawe fl
are compensated, which leads to better control performamte
robustness than that achieved using the passive or actare op
loop control. In this paper, we focus our attention on redgci
the vortex shedding behind a 2D circular cylinder using feed
back control. Control design for such flows requires speziet
due to the high-dimensionality and non-linearity of the Nav
Stokes equations. Many control design techniques based on
control theory are too computationally expensive to beiadpl
to the full Navier—Stokes equations.

Many attempts have been made to simplify flow systems includ-

ing reduced order models (ROMs) which approximate flow dy-
namics and make the problem computationally tractables Thi
paper presents an efficient modelling approach based oethe r
solvent operator of the linearized Navier—Stokes equatidhe
method effectively captures linear input-output dynanoickhe
flow without using numerical simulation data or experiménta
data. The effectiveness of the resulting models is showreby d
signing robust stabilising feedback controllers for twantrol
arrangements.

Linear modelling approach

Transfer function of linear flow dynamics

The objective of feedback control is to completely supptkees
vortex shedding behind a 2D circular cylinder. In other veprd
we attempt to drive the flow towards its unstable steady state
(base flow), around which the Navier—Stokes equations are li
earized. The following formalism mainly follows the work of
Sipp et al. [9]. To investigate the dynamics of incomprdssib
flow near its steady state, we perform an input-output aiglys
of the forced Navier—Stokes equations:
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where the source terfiin the momentum equations models the
external forcing with zero steady term. The governing eéquat
of the linear flow dynamics around the base fidw P) are
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Here, (U, p') represents the unsteady component, the small per-
turbation around the steady staféis defined agd/dx, d/dy)
andv is the kinematic viscosity. The nonlinear tewh- Ou’
can be neglected following an assumption of small perturba-
tions. To evaluate the linear dynamics of a flow system, it is
convenient to take Laplace transforms. Introducing thestra
formation into equation (2), we obtain the equations

si+U-00+0-0U=—-0p+vO2a+f, 0-0=0,
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where (0, p) andf represent the complex spatial structure of
the response and forcing waves respectively ado + jw is
the Laplace variable. Thus, the transfer function betwéen t
external forcing and response can be written as
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where(sE — 4)~1 is known as the resolvent operatet.is the
linearized Navier—Stokes operator around the base flow
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Consider writing equation (5) in state-space form for adime

time-variant dynamical systef(s):
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|T is the system state is an input vector of

wherex = [0 P



dimensionp andy is an output vector of dimensioq The
feedback control arrangement used here is single-inpgtesin
output (SISO) withp = q = 1. The vectorB is determined by
the shape of the actuation, which is from the spatial diszaet
tion of the external forcing terfh The matriceg” andD repre-
sent output and feed-forward dynamics respectively. Tdvestr
fer function between the output and input can be written as

P(S)=C(SE—A) 1B+D. @)

In generalP(s) is of high dimension, which makes the con-
trol design problem computationally intractable. However
still provides input-output data which can be used to form re
duced order models using vector-fitting algorithm VECTFIT
[4]. VECTFIT identifies a reduced-order mod%@s) of a sig-
nificantly smaller dimensio which has almost the same re-
sponse as the original systd®s) for harmonic input(s= jw)
within a broad frequency range.

Numerical flow solver

We consider an incompressible flow past a 2D circular cylinde
of diameteD. The Reynolds number is definedRe= U, D /v
whereU,, is the free-stream velocity. The computational do-
main is the same as the domain used by Leontini et al. [6]. The
mesh consists of.86 x 10* triangles and their wall-normal size
around the cylinder is.01. The discretization is supported by
the computing platform FEnICS [7] with Taylor-Hood finitesel
ments in space and backward Euler scheme in tishe=(0.01).

Two control setups are considered as shown in figure 1. In the
first case, a uniform free-stream velocifyoo = 1, Voo = 0)

is imposed at the inlet boundary and encounters a station-
ary cylinder located afx = 0, y = 0) where no-slip bound-
ary conditions are enforced. Symmetric boundary condition
(0u/oy = 0, v=0) are applied on the top and bottom bound-
aries(0 < x < 23 y = +£15). Standard outflow boundary con-
ditions are used at the outlet boundéxy= 23, —15<y < 15):
—pn+vOu-n = 0, wheren denotes the outward-pointing nor-
mal vector on the boundary. In the second control arrangemen
instead of moving the cylinder directly, the flow is solvedaim
accelerated frame of reference attached to the cylindeal-To
low this, the cylinder acceleratiamis treated as an extra forcing
termf and the boundary conditions are modified accordingly.
More details can be found in Leontini et al. [6].

The base flowU, P), which is governed by the unforced steady
Navier—Stokes equations, is solved using a Newton method.
The boundary conditions for the base flow are the same as those
described above. The perturbation flow fi¢ld p) has simi-

lar boundary conditions except at the inlet where homogesieo
boundary conditions are enforcé¢d, = 0) to ensure zero per-
turbations at infinity. The stability analysis of the basevBo
and perturbation systems have been validated using thisresu
of Barkley [1]. To validate the controllers, direct numelisim-
ulations are performed using the IPCS (Incremental Pressur
Correction Scheme) method which is extensively tested [7].
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(a) Control setup | (b) Control setup Il

Figure 1:(a) A pair of body forces applied near cylinder surface
cooperates with a velocity sensor placed on the centrelitieawv
distanced from the center of the cylinde(b) The force sensor
is placed on the cylinder to measure the lift which is fed ® th
actuator that controls the acceleration of the cylinder.

Resolvent-based feedback control

Actuator and sensor setup

Two control setups are considered which are shown in figure 1.
In-flow and body-mounted sensors and actuations are utilise
to compare their potential performances. Control setugs @s
pair of anti-symmetrical body fordeas the source term defined

in equation 3 for actuation and the velocity in the wake forsse
ing. Such arrangement is suitable for the analysis of semsor
actuator placement. The centers of two actuation regianatar

a distance of = 0.6 from the cylinder’s center and at an angle
of 8 = £70° from the cylinder’s downstream-pointing horizon-
tal. The basic distribution of each actuation region is Gaus

governed by
)- ®

whereA = 1.0 ando = 0.1. Moreover, the center of the actua-
tion is defined bykg = rcog8) andyg = rsin(8). The actuator
parameters are chosen such that the body force should be con-
centrated near the separation points to affect the vorteg-sh
ding. The sensor is positioned a distakcdownstream of the
cylinder and measures transverse veloeityThis arrangement

is similar to that used in lllingworth [5].
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Control setup Il is a more practical arrangement as shown in
figure 1(b). Actuation is provided by oscillation of the aydier

and its transverse acceleratiaiis actuated. The feedback sig-
nal is provided by a force sensor attached to the cylindechvhi
measures the lift Thus, both actuator and sensor are placed on
the cylinder without any necessity to consider their plagets.

Ho optimal control

The fegdback controller is designed based on the reduakst-or
modelP(s) usingH« loop-shaping. The feedback arrangement
considered is shown below.

whereb € [0,1], r is disturbances at the input amdrepre-
sents noise at the sensor. The controgs) for plant P(s)

is designed using the loop shaping design method by Glover-
McFarlane [3] which maximizes the normalized coprime sta-
bility margin b(P,K) of plant-controller feedback loop. Physi-
cally, it's an indication of the robustness of the closedplays-

tem to unmodelled dynamics and used as a performance mea-
sure here. For SISO systems as considered here, a compensato
which weights the plant according to the control objectigda

the same form as the weight used by lllingworth [5]. The form
of the control weight is

a2

S (10)

W(s) =k
with parameter& anda to be chosen.

Results

Simulated cases and model reduction

The Reynolds number considered in this paper ranges from
Re= 40 to 110 for control setup | and froRe= 40 to 100

for setup IlI. In both cases, the sensor location and the weigh
parameters are chosen after searching different valueioamb
tions to ensure the largest optimal stability marigig:.



Before the reduced-order models are used for control design
they should first be validated. The order of ROMs is chosen
such that the fitting residual is below<110~°. This is achieved
with a model order of 30 or less for aRe considered. Re-
sults at Reynolds number of 60 are shown in figure 2. Fig-
ure 2a) shows the frequency responses of the flow systems
P(jw) and the ROMs for control setup | and Il respectively.
The corresponding gains and phases are almost identical. Th
comparisons of open-loop impulse responses (with magmitud
1 x 10~%) between the original systems and ROMs show excel-
lent agreement in figure(B). Thus, the reduced-order models
we found are good approximations of the true systems.
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Figure 2:(a) Frequency responses frddfjw) (—) compared
to those from the ROMss] for control setup | (left) and setup
Il (right) at Re= 60. (b) The corresponding open-loop impulse
responses from numerical simulations. The results forpsktu
are multiplied by @5 so that the same scale can be used.

Feedback control of vortex shedding

The feedback controllers are designed based on the ROMg usin
He loop shaping. The optimal stability margibgp is shown

in figure 3 for two control setups at different Reynolds num-
bers and for different sensor locations. Figufe)3indicates
that the largest optimal stability margiog,; (best performance
and robustness achieved) for each control setup is dengeasi
sharply with increasing Reynolds number. We also see thmt co
trol setup | provides largehop: for all the Reynolds numbers
considered. A contour map by for control setup | is plotted
against Reynolds number and sensor locatiam figure 3b).

The dashed line represents the optimal sensor locationega f
tion of Reynold number. A fundamental trade-off is observed
the sensor should be close enough to the cylinder to redece th
time delay due to convection but it should also be far enough
from the cylinder to measure the information (e.g. unstable
eigenmodes) developed in the downstream. The compromise
between these two conflict requirements becomes hardet-to sa
isfy with increasing Reynolds number, which leads the optim
sensor location moving downstream linearly. Similar resate
observed in recent work [8] which considers feedback céntro
of the linearized Ginzburg-Landau system.

All control laws are validated in DNS by testing closed-loop
impulse responses (with magnitude<1.0~-2). For each con-
trol setup, results at two representative Reynolds numdpers
plotted in figure 4. The top row in the figure represents con-
trol setup I, where the optimal feedback controller desigfioe

Re= 60 is compared to the controller designed Re= 110.

The first thing to note is that the vortex shedding is compfete
suppressed for both Reynolds numbers as shown by transverse
velocity vi(t) at the sensor and total perturbation enekdy)
(figure 4b)). It is also obvious that the controller Rie= 60
performs much better as shown in the simultaneous vorticity
perturbation fields (figure(4)) at the two Reynolds numbers.
The same quantities for control setup Il are also shown in fig-
ure 4ef) but atRe= 60 andRe= 80. Even though feed-
back control laws suppress the vortex shedding for all cases
the controller designed fdRe= 80 shows poorer performance.
From the comparison among all four cases, we can see that vor-
tex shedding is harder to suppress at higher Reynolds nsmber
More importantly, control setup | performs significantiyttee

than setup Il at the same Reynolds number. These conclusions
are consistent with the values lafp: as shown in figure 3: the
higher the optimal stability margibopy is, the better the feed-
back controller performs.

The poor feedback performance and small stability margins ¢
be linked to the roots of the relevant transfer functionguFé

4(a, d) shows right-half plane (RHP) zeros of ROMs near unsta-
ble poles for these cases. The comparison between the two con
trol setups aRe= 60 (x/o) indicates that the transfer function of
setup Il has an extra pair of RHP zeros. The existence of RHP
zeros is problematic for control design because they lihét t
bandwidth that can be controlled with good performance and r
bustness. Therefore, RHP zeros near the unstable polesiseve
restrict the performance and robustness, which are mehbyre
bopt. A physical interpretation is that the unstable eigenmodes
required to be controlled develop downstream, which appear
only weakly at the sensor location. Therefore RHP zeros here
imply that the unstable modes are nearly invisible to the sen
sor. Increasing Reynolds number also moves the zeros to the
RHP, which can be seen from the comparison between black
markers /o) and blue markers«(e) in figure 4@) or (d). The
RHP zeros for control setup | &e= 110 is actually caused

by the time delay from convection because the sensor has been
moved fromd = 1.13 tod = 3.43. The sensor measures out-
dated information which is fed to the controller. Howevehan

the sensor is placed at the same location as the actuatan; as f
control setup Il, increasing Reynolds number makes urstabl
eigenmodes more invisible to the sensor because they become
weaker near the cylinder at a higher Reynolds number.
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Figure 3:(a) Largest optimal stability margibopt at different
Reynolds numbers for control setup-) and setup Il £ -).
(b) Optimal sensor locations=(=) and contour plot obgpt for
control setup | against Reynolds number and sensor locdtion
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Figure 4:(Top row) Control setup I(a) RHP zerosd/e) of reduced order models near unstable pokég @t two Reynolds numbers.
(b) The transverse velocity (top) at the sensoir{ c) and the total perturbation energy (bottomR&t= 60 (—) andRe= 110 (- -).
The energy foRe= 110 is multiplied by 001 so that the same scale can be ugeylSpatial maps of vorticity perturbation &= 75
(A/A) for Re= 60 (top) andRe= 110 (bottom).(Bottom row Control setup 11(d, e,f) have the same layout és,b, c) atRe= 60 and
Re= 80. The energy foRe= 80 is multiplied by 01 so that the same scale can be used. All contour plots hawathe scale-0.05.

Conclusions

We use a system identification method to model the 2D lin-
earized cylinder flow from its resolvent operator, then de-

sign controllers for reduced-order models using.amethod.

ROMs are identified from the actual frequency responsesof li

earized flow systems and validated in DNS by comparing their

impulse responses. The controllers are validated by applyi

them to the original high-order systems. We investigate two

single-input single-output control setups and succeysfuip-

press the vortex shedding at the Reynolds numbers condidere

The sensor placement is crucial to the performance and tobus

ness of the controller. The control setup with oscillatoylre
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