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Abstract

Feedback control of vortex shedding behind a 2D cylinder at
low Reynolds numbers is investigated using a resolvent ap-
proach. This work presents an efficient modelling approach
by capturing the input-output dynamics of an incompressible
flow from the resolvent operator (i.e. the frequency response)
of the linearized Navier-Stokes equations. The difficulty of
applying modern control design techniques to complex, high-
dimensional flow systems is overcome by exploiting low-order
models identified from frequency responses. We design optimal
control laws by applyingH∞ loop shaping to the low-order mod-
els for a range of Reynolds numbers. Two single-input single-
output control arrangements are examined. The first setup is
a velocity measurement in the cylinder wake to drive a pair
of body forces located near the separation points. Complete
suppression of shedding is observed up toRe= 110. We also
observe a fundamental trade-off: the sensor should be close
enough to the cylinder to reduce the excessive time lag, but
it should be kept sufficiently far from the cylinder to measure
unstable eigenmodes developed downstream. These two con-
flicting requirements become more difficult to satisfy for larger
Reynolds numbers. The second setup utilises cylinder lift mea-
surement to oscillate the cylinder. We observe that controlfor
this arrangement is more challenging, with complete suppres-
sion of vortex shedding achieved only up toRe= 60. The rea-
sons for the difficulty of control for these two control arrange-
ments are discussed.

Introduction

The flow around a bluff body becomes unstable above the crit-
ical Reynolds number and results in alternate vortex-shedding.
It gives rise to strong force fluctuations which are responsible
for structural vibrations, acoustic noise and resonance. Many
efforts have been made to suppress vortex shedding [2, 9]. In
the past, passive control has received considerable attention due
to the simplicity of its practical implementation. A simplemod-
ification of the geometry or structural additions can be usedto
affect the flow beneficially. Another way to alter a flow is in-
troducing powered actuators and injecting energy in a sensible
way. This is called active open-loop control, which operates
according to pre-defined laws and shows poor robustness.

A more robust and efficient way to control the flow is active
closed-loop control or feedback control, which comprises actu-
ators operating according to the feedback signals providedby
sensors. Unexpected disturbances or uncertainties in the flow
are compensated, which leads to better control performanceand
robustness than that achieved using the passive or active open-
loop control. In this paper, we focus our attention on reducing
the vortex shedding behind a 2D circular cylinder using feed-
back control. Control design for such flows requires specialcare
due to the high-dimensionality and non-linearity of the Navier–
Stokes equations. Many control design techniques based on
control theory are too computationally expensive to be applied
to the full Navier–Stokes equations.

Many attempts have been made to simplify flow systems includ-

ing reduced order models (ROMs) which approximate flow dy-
namics and make the problem computationally tractable. This
paper presents an efficient modelling approach based on the re-
solvent operator of the linearized Navier–Stokes equations. The
method effectively captures linear input-output dynamicsof the
flow without using numerical simulation data or experimental
data. The effectiveness of the resulting models is shown by de-
signing robust stabilising feedback controllers for two control
arrangements.

Linear modelling approach

Transfer function of linear flow dynamics

The objective of feedback control is to completely suppressthe
vortex shedding behind a 2D circular cylinder. In other words,
we attempt to drive the flow towards its unstable steady state
(base flow), around which the Navier–Stokes equations are lin-
earized. The following formalism mainly follows the work of
Sipp et al. [9]. To investigate the dynamics of incompressible
flow near its steady state, we perform an input-output analysis
of the forced Navier–Stokes equations:

∂u
∂t

+u ·∇u =−∇p+ν∇2u+ f ′, ∇ ·u = 0 , (1)

where the source termf ′ in the momentum equations models the
external forcing with zero steady term. The governing equations
of the linear flow dynamics around the base flow(U,P) are

∂u′

∂t
+U ·∇u′+u′

·∇U =−∇p′+ν∇2u′+ f ′, ∇ ·u′ = 0 . (2)

Here,(u′, p′) represents the unsteady component, the small per-
turbation around the steady state.∇ is defined as(∂/∂x, ∂/∂y)
and ν is the kinematic viscosity. The nonlinear termu′

·∇u′

can be neglected following an assumption of small perturba-
tions. To evaluate the linear dynamics of a flow system, it is
convenient to take Laplace transforms. Introducing the trans-
formation into equation (2), we obtain the equations

sû+U ·∇û+ û ·∇U =−∇p̂+ν∇2û+ f̂ , ∇ · û = 0 , (3)

where(û, p̂) and f̂ represent the complex spatial structure of
the response and forcing waves respectively ands= σ+ jω is
the Laplace variable. Thus, the transfer function between the
external forcing and response can be written as

[
û
p̂

]
= (sE −A)−1

[
f̂
0

]
, (4)

where(sE −A)−1 is known as the resolvent operator.A is the
linearized Navier–Stokes operator around the base flow

A =

[
−U ·∇− () ·∇U +ν∇2

−∇
∇ · () 0

]
, E =

[
I 0
0 0

]
. (5)

Consider writing equation (5) in state-space form for a linear,
time-variant dynamical systemP(s):

sEx = Ax+Be

y = C x+De , (6)

wherex = [û p̂]T is the system state,e is an input vector of



dimensionp and y is an output vector of dimensionq. The
feedback control arrangement used here is single-input single-
output (SISO) withp= q= 1. The vectorB is determined by
the shape of the actuation, which is from the spatial discretiza-
tion of the external forcing term̂f . The matricesC andD repre-
sent output and feed-forward dynamics respectively. The trans-
fer function between the output and input can be written as

P(s) = C (sE −A)−1
B +D . (7)

In generalP(s) is of high dimension, which makes the con-
trol design problem computationally intractable. However, it
still provides input-output data which can be used to form re-
duced order models using vector-fitting algorithm VECTFIT
[4]. VECTFIT identifies a reduced-order modelP̃(s) of a sig-
nificantly smaller dimensionN which has almost the same re-
sponse as the original systemP(s) for harmonic input(s= jω)
within a broad frequency range.

Numerical flow solver

We consider an incompressible flow past a 2D circular cylinder
of diameterD. The Reynolds number is defined asRe=U∞D/ν
whereU∞ is the free-stream velocity. The computational do-
main is the same as the domain used by Leontini et al. [6]. The
mesh consists of 5.46×104 triangles and their wall-normal size
around the cylinder is 0.01. The discretization is supported by
the computing platform FEniCS [7] with Taylor-Hood finite ele-
ments in space and backward Euler scheme in time (∆t = 0.01).
Two control setups are considered as shown in figure 1. In the
first case, a uniform free-stream velocity(U∞ = 1, V∞ = 0)
is imposed at the inlet boundary and encounters a station-
ary cylinder located at(x = 0, y = 0) where no-slip bound-
ary conditions are enforced. Symmetric boundary conditions
(∂u/∂y = 0, v = 0) are applied on the top and bottom bound-
aries(0< x < 23, y= ±15). Standard outflow boundary con-
ditions are used at the outlet boundary(x= 23, −15< y< 15):
−pn+ν∇u ·n = 0, wheren denotes the outward-pointing nor-
mal vector on the boundary. In the second control arrangement,
instead of moving the cylinder directly, the flow is solved inan
accelerated frame of reference attached to the cylinder. Toal-
low this, the cylinder acceleration ˆa is treated as an extra forcing
term f̂ and the boundary conditions are modified accordingly.
More details can be found in Leontini et al. [6].

The base flow(U, P), which is governed by the unforced steady
Navier–Stokes equations, is solved using a Newton method.
The boundary conditions for the base flow are the same as those
described above. The perturbation flow field(û, p̂) has simi-
lar boundary conditions except at the inlet where homogeneous
boundary conditions are enforced(û∞ = 0) to ensure zero per-
turbations at infinity. The stability analysis of the base flows
and perturbation systems have been validated using the results
of Barkley [1]. To validate the controllers, direct numerical sim-
ulations are performed using the IPCS (Incremental Pressure
Correction Scheme) method which is extensively tested [7].

(a) Control setup I (b) Control setup II

Figure 1:(a) A pair of body forces applied near cylinder surface
cooperates with a velocity sensor placed on the centreline with a
distanced from the center of the cylinder.(b) The force sensor
is placed on the cylinder to measure the lift which is fed to the
actuator that controls the acceleration of the cylinder.

Resolvent-based feedback control

Actuator and sensor setup

Two control setups are considered which are shown in figure 1.
In-flow and body-mounted sensors and actuations are utilised
to compare their potential performances. Control setup I uses a
pair of anti-symmetrical body forcêf as the source term defined
in equation 3 for actuation and the velocity in the wake for sens-
ing. Such arrangement is suitable for the analysis of sensoror
actuator placement. The centers of two actuation regions are at
a distance ofr = 0.6 from the cylinder’s center and at an angle
of θ =±70◦ from the cylinder’s downstream-pointing horizon-
tal. The basic distribution of each actuation region is Gaussian
governed by

S(A, r,θ,σ) =
A

2πσ2 exp

(
−
(x−x0)

2+(y−y0)
2

2σ2

)
. (8)

whereA= 1.0 andσ = 0.1. Moreover, the center of the actua-
tion is defined byx0 = rcos(θ) andy0 = rsin(θ). The actuator
parameters are chosen such that the body force should be con-
centrated near the separation points to affect the vortex shed-
ding. The sensor is positioned a distanced downstream of the
cylinder and measures transverse velocityv1. This arrangement
is similar to that used in Illingworth [5].

Control setup II is a more practical arrangement as shown in
figure 1(b). Actuation is provided by oscillation of the cylinder
and its transverse acceleration ˆa is actuated. The feedback sig-
nal is provided by a force sensor attached to the cylinder which
measures the lift̂l. Thus, both actuator and sensor are placed on
the cylinder without any necessity to consider their placements.

H∞ optimal control

The feedback controller is designed based on the reduced-order
modelP̃(s) usingH∞ loop-shaping. The feedback arrangement
considered is shown below.

P(s)
e

K(s)

r y

−

n

b=

∥∥∥∥

[
K
I

]
(I +PK)−1

[
P I

]∥∥∥∥
−1

∞
(9)

where b ∈ [0,1], r is disturbances at the input andn repre-
sents noise at the sensor. The controllerK(s) for plant P(s)
is designed using the loop shaping design method by Glover-
McFarlane [3] which maximizes the normalized coprime sta-
bility margin b(P,K) of plant-controller feedback loop. Physi-
cally, it’s an indication of the robustness of the closed-loop sys-
tem to unmodelled dynamics and used as a performance mea-
sure here. For SISO systems as considered here, a compensator
which weights the plant according to the control objectivesis in
the same form as the weight used by Illingworth [5]. The form
of the control weight is

W(s) = k
a2

(s+a)2
. (10)

with parametersk anda to be chosen.

Results

Simulated cases and model reduction

The Reynolds number considered in this paper ranges from
Re= 40 to 110 for control setup I and fromRe= 40 to 100
for setup II. In both cases, the sensor location and the weight
parameters are chosen after searching different value combina-
tions to ensure the largest optimal stability marginbopt.



Before the reduced-order models are used for control design,
they should first be validated. The order of ROMs is chosen
such that the fitting residual is below 1×10−5. This is achieved
with a model order of 30 or less for allRe considered. Re-
sults at Reynolds number of 60 are shown in figure 2. Fig-
ure 2(a) shows the frequency responses of the flow systems
P(jω) and the ROMs for control setup I and II respectively.
The corresponding gains and phases are almost identical. The
comparisons of open-loop impulse responses (with magnitude
1×10−4) between the original systems and ROMs show excel-
lent agreement in figure 2(b). Thus, the reduced-order models
we found are good approximations of the true systems.
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Figure 2:(a) Frequency responses fromP(jω) ( ) compared
to those from the ROMs () for control setup I (left) and setup
II (right) at Re= 60. (b) The corresponding open-loop impulse
responses from numerical simulations. The results for setup II
are multiplied by 0.25 so that the same scale can be used.

Feedback control of vortex shedding

The feedback controllers are designed based on the ROMs using
H∞ loop shaping. The optimal stability marginbopt is shown
in figure 3 for two control setups at different Reynolds num-
bers and for different sensor locations. Figure 3(a) indicates
that the largest optimal stability marginbopt (best performance
and robustness achieved) for each control setup is decreasing
sharply with increasing Reynolds number. We also see that con-
trol setup I provides largerbopt for all the Reynolds numbers
considered. A contour map ofbopt for control setup I is plotted
against Reynolds number and sensor locationd in figure 3(b).
The dashed line represents the optimal sensor location as a func-
tion of Reynold number. A fundamental trade-off is observed:
the sensor should be close enough to the cylinder to reduce the
time delay due to convection but it should also be far enough
from the cylinder to measure the information (e.g. unstable
eigenmodes) developed in the downstream. The compromise
between these two conflict requirements becomes harder to sat-
isfy with increasing Reynolds number, which leads the optimal
sensor location moving downstream linearly. Similar results are
observed in recent work [8] which considers feedback control
of the linearized Ginzburg-Landau system.

All control laws are validated in DNS by testing closed-loop
impulse responses (with magnitude 1× 10−2). For each con-
trol setup, results at two representative Reynolds numbersare
plotted in figure 4. The top row in the figure represents con-
trol setup I, where the optimal feedback controller designed for

Re= 60 is compared to the controller designed forRe= 110.
The first thing to note is that the vortex shedding is completely
suppressed for both Reynolds numbers as shown by transverse
velocity v1(t) at the sensor and total perturbation energyE(t)
(figure 4(b)). It is also obvious that the controller atRe= 60
performs much better as shown in the simultaneous vorticity
perturbation fields (figure 4(c)) at the two Reynolds numbers.
The same quantities for control setup II are also shown in fig-
ure 4(e, f) but at Re= 60 andRe= 80. Even though feed-
back control laws suppress the vortex shedding for all cases,
the controller designed forRe= 80 shows poorer performance.
From the comparison among all four cases, we can see that vor-
tex shedding is harder to suppress at higher Reynolds numbers.
More importantly, control setup I performs significantly better
than setup II at the same Reynolds number. These conclusions
are consistent with the values ofbopt as shown in figure 3: the
higher the optimal stability marginbopt is, the better the feed-
back controller performs.

The poor feedback performance and small stability margins can
be linked to the roots of the relevant transfer functions. Figure
4(a,d) shows right-half plane (RHP) zeros of ROMs near unsta-
ble poles for these cases. The comparison between the two con-
trol setups atRe= 60 ( / ) indicates that the transfer function of
setup II has an extra pair of RHP zeros. The existence of RHP
zeros is problematic for control design because they limit the
bandwidth that can be controlled with good performance and ro-
bustness. Therefore, RHP zeros near the unstable poles severely
restrict the performance and robustness, which are measured by
bopt. A physical interpretation is that the unstable eigenmodes
required to be controlled develop downstream, which appear
only weakly at the sensor location. Therefore RHP zeros here
imply that the unstable modes are nearly invisible to the sen-
sor. Increasing Reynolds number also moves the zeros to the
RHP, which can be seen from the comparison between black
markers (/ ) and blue markers (/ ) in figure 4(a) or (d). The
RHP zeros for control setup I atRe= 110 is actually caused
by the time delay from convection because the sensor has been
moved fromd = 1.13 to d = 3.43. The sensor measures out-
dated information which is fed to the controller. However, when
the sensor is placed at the same location as the actuator, as for
control setup II, increasing Reynolds number makes unstable
eigenmodes more invisible to the sensor because they becomes
weaker near the cylinder at a higher Reynolds number.
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Figure 3: (a) Largest optimal stability marginbopt at different
Reynolds numbers for control setup I ( ) and setup II ( ).
(b) Optimal sensor locations ( ) and contour plot ofbopt for
control setup I against Reynolds number and sensor locationd.
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Conclusions

We use a system identification method to model the 2D lin-
earized cylinder flow from its resolvent operator, then de-
sign controllers for reduced-order models using aH∞ method.
ROMs are identified from the actual frequency responses of lin-
earized flow systems and validated in DNS by comparing their
impulse responses. The controllers are validated by applying
them to the original high-order systems. We investigate two
single-input single-output control setups and successfully sup-
press the vortex shedding at the Reynolds numbers considered.

The sensor placement is crucial to the performance and robust-
ness of the controller. The control setup with oscillatory cylin-
der attached by a force sensor shows poorer performance than
the in-flow sensor setup at all Reynolds numbers considered.
Such control setup has the same sensor and actuator position,
which implies that the unstable eigenmodes developed down-
stream cannot be sufficiently well captured. This limitation
manifests itself in the form of RHP zeros near the unstable poles
in the root maps of the ROMs. Different sensor positions are
examined for the in-flow sensor setup to further investigatethe
roles of sensor placement. The corresponding optimal sensor
locations indicate two principles of the sensor placement:on
the one hand, it should be close enough to the actuator to re-
ceive the information in a timely fashion; on the other hand,the
sensor is required to measure unstable eigenmodes developed in
the downstream. Difficulties in satisfying these two conflicting
requirements cause a deterioration of the optimal controller’s
performance and robustness.

The present work validated an efficient modelling approach
which doesn’t require any DNS or experimental data. The
method supports a preliminary investigation of the role of sen-
sor placement in the 2D cylinder flow. The observation of a
fundamental trade-off when choosing the optimal sensor loca-
tion provides important guidance for further research in optimal
sensor and actuator selection.
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