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Abstract

Inhomogeneous thermal conductivity disrupts the formation of
the thermal boundary layer, increasing temperature gradients.
This comes at the cost of reduced conducting area and natu-
ral convective velocities. However, at the low Prandtl numbers
possessed by liquid metals (of order 10−2), such as fusion re-
actor breeder fluids, the former outweighs the latter, and heat
transfer can be promoted. Quasi-two-dimensional mixed con-
vection simulations of a magnetohydrodynamic vertical duct
were performed in the Rayleigh number and interaction param-
eter ranges of 102 < Ra < 104 (with constant Pr = 0.022) and
100 < N < 1600 respectively. Heat transfer enhancement was
observed when buoyant forces (proportional to Ra) were suf-
ficiently stronger than electromagnetic forces (proportional to
N), which are imposed by the confining magnetic field.

Introduction

The magnetohydrodynamic (MHD) flow of a fusion reactor’s
electrically conducting breeder liquid, in the presence of its
confining magnetic field, experiences a Lorentz force, ~j× ~B,
where ~j is the (induced) current density, and ~B the magnetic
field. The Lorentz force restrains the flow, resulting in a uni-
form, slug flow profile [13]. The Lorentz force is also highly
anisotropic [3] which suppresses turbulent mixing, to the detri-
ment of heat transfer. These exacting conditions necessitate the
use of heat transfer promoters. Hence, the aim of this work is to
highlight an alternate means of enhancing heat transfer, which
does not interfere with the flow of the breeder liquid through the
duct. Furthermore, the Lorentz force diffuses momentum along
the magnetic field direction (a relic of Alfvén wave propagation
[19]), such that the global Joule dissipation is minimized [4].
Under the strong confining magnetic field the flow approaches
two-dimensionality, except within the thin Hartmann boundary
layers which form on walls perpendicular to the magnetic field.
Hence, by invoking a quasi two-dimensional model, we are able
to expediently analyse the dependence of velocity on key im-
posed parameters, including the Rayleigh number and interac-
tion parameter.

The flow is considered to be quasi-two dimensional so long
as momentum outside the Hartmann layers is able to diffuse
within the whole core flow at timescales smaller than that of
viscosity or inertia [15]. This diffusion timescale is sufficiently
small if Ha � 1 and N � 1, where the Hartmann number,
Ha = aB(σ/ρ0ν)1/2, represents the ratio of the square of elec-
tromagnetic to viscous forces, and the interaction parameter,
N = Ha2/Re, represents the ratio of electromagnetic to iner-
tial forces. Additionally the Reynolds number, Re = U0Lc/ν,
should also be much greater than unity, such that interaction
between transverse planes is limited [19]. Note that a is the
distance between two Hartmann walls, B the uniform mag-
netic field strength, U0 a reference velocity, Lc the character-
istic length (half the duct height, Ld) and σ, ρ0 and ν the fluid’s
electrical conductivity, reference density and kinematic viscos-
ity, respectively. In addition, ~B is considered to be imposed (no
magnetic field component is induced by ~u), hence the magnetic

field is (quasi) static. This requires a small magnetic Reynolds
number, Rem = U0Lc/ηm, such that magnetic diffusion (where
ηm is the magnetic diffusivity) dominates advection. These
assumptions form the core of the SM82 model (developed by
Sommeria and Moreau [19]), which is used within this work.

A great deal of research has been performed to validate the
SM82 model, however, only three assumptions are pertinent
to discuss, see [8, 12, 16] for more. Firstly, within Shercliff
layers (which form on walls parallel to the magnetic field)
viscosity acts at a similar timescale to electromagnetic diffu-
sion [15], maintaining three-dimensional flows, inducing a 10%
modelling error [17]. Secondly, the Hartmann layers must re-
main laminar and stable, such that viscous frictional forces,
due to the no-slip condition, are conferred to the core by a
linear Hartmann braking term [19]. This term takes the form
H/Re in the momentum equation, where H = n(Lc/a)2Ha, is
the Hartmann friction parameter, which considers geometric ef-
fects (where the number of Hartmann walls, n = 2). The ratio
Re/Ha must remain below a critical value, which for transition
is expected to be between 350 and 400 [10, 11]. Stability cri-
teria are much higher [15]. A value of Re/Ha = 1 was used
for all simulations. Thirdly, as mixed convection is simulated,
the criteria, Gr < Ha4/N2

b , governing the strength of buoyant
to electromagnetic forces, should be enforced. For Q2D to be
achieved, Nb ≥ 4 [2], where Nb represents a buoyant core inter-
action parameter, and the Grashof number, Gr = gβ∆θ̂Lc

3/ν2,
indicates the relative strength of buoyant to viscous forces (note
Ra = GrPr). Additionally g is the acceleration due to Earth’s
gravity, ∆θ̂ a dimensional temperature increment and β the
fluid’s volumetric thermal expansion coefficient.

Methodology

A periodic duct section is modelled (see Figure 1). Periodic-
ity requires that the effect of the background horizontal thermal
gradient be sufficiently less than that of thermal fluctuations, or
Λ/PrReU � 1, where Λ = nsLs/Ld is the conducting length
fraction (a conducting area fraction if not Q2D), ns the total
number of conducting sections (along Ld), Ls the length of a
conducting section and U the area flow rate. Nodes on the pe-
riodic boundaries (inlet and outlet) are then considered to have
identical fluctuating velocity, temperature and pressure values.
All other walls have the no-slip condition imposed, and perfect
electrical and thermal insulation, except for the conducting sec-
tions of the heated face. The uniform imposed magnetic field
is aligned with the transverse (z) direction, with the x-y plane
simulated. The initial velocity field defined was the analytic,
fully developed profile [15]. Relative temperatures were always
used. The pressure drop is scaled at each timestep to maintain a
constant flow rate. The fluid is incompressible, Newtonian and
electrically conducting. With the exception of density (mod-
elled via the Boussinesq approximation) all fluid properties are
assumed constant.

Use of the Boussinesq approximation for buoyancy, where the
density is linearly related to the reference density by the dif-



ference in relative temperatures, ρ/ρ0 = 1− β
(
θ̂− θ̂0

)
, is ar-

guably contentious. The Boussinesq approximation holds only
for small temperature gradients, which is not the case within
fusion reactor blankets, where temperature differences are ex-
pected to be 250 ◦C [1] to 300 ◦C [5]. However, qualitatively
similar results should still be obtained [20], although quanti-
tative discrepancies (of up to 10%) may be observed [6, 14].
Within a square cavity, at Ha = 100, the error in applying the
Boussinesq approximation remains small when considering the
average Nusselt number (2%), but large differences in peak
Nusselt numbers and velocities (up to 20%) were observed, for
Ra up to 106 [7]. Hence, the Boussinesq approximation still
appears appropriate, as low Rayleigh numbers (Ra < 104) were
simulated, and since the approximation is used in most other
MHD research [20].
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Figure 1: Schematic diagram of the system. The periodic
boundaries are denoted by thick dashed lines. The length over
which a constant heat flux is imposed, Ls and the orientation
of gravity (not shown), relative to that of the forced flow, are
varied. In the absence of natural convection the velocity pro-
file will have an appearance similar to u(y), approximately flat
within the core region, and decaying to the no-slip condition
within the Shercliff layers, each of thickness δS.

The governing Q2D equations, in non-dimensional form, are
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noting that ~u = (u,v) represents the Q2D velocity vector.
The following scalings were used for non-dimensionalization:
length (x or y) by Lc, time by Lc/U0, velocity (u or v) by
U0, the differential operator by 1/Lc, kinematic pressure by
ρ0U0

2 and temperature by a temperature increment ∆θ̂, based
on the heat flux imposed over one characteristic length (∆θ̂ =
q̂wLc/αρ0Cp). The domain was discretized with a macro ele-
ment distribution, over which high polynomial order (NP = 10)
basis functions were employed. An in-house spectral element
solver recasts the equations in a weak (integral) form using the
Galerkin (weighted residual) method, and then solves the result-
ing set of ordinary differential equations. A three-step operator
splitting scheme based on backwards differentiation is used for
time integration [18].

The rate of heat transfer is quantified via the Nusselt number,
Nu = L−1

d
∫ Lc
−Lc

2/(θ′b−θ′w)dx, where θ′b =
∫ Lc
−Lc

uT dy/
∫ Lc
−Lc

udy
is the bulk fluctuating temperature and θ′w the wall fluctuat-
ing temperature. The Nusselt number represents the ratio of
convective heat transfer (T advected by u) to conduction from
heated sections of the wall. As the bulk temperature depends
on the streamwise velocity, it can be higher than (or equal to)
the wall temperature while heat is still transferred from the wall.
This will occur when a section of the flow reverses in the vicin-
ity of the heated wall (the flow rate remains constant as the fluid
further from the wall also accelerates in the opposite direction,
creating an ‘S-shaped’ velocity profile). Regardless, the Nus-
selt number still indicates the degree of improvement in heat
transfer, and when negative indicates that more thermal energy
is carried in the direction opposite the forcing. Furthermore, a
Nusselt number ratio, NuR = Nu|Λ<1/Nu|Λ=1, is used to com-
pare the heat transfer rate for the modified (Λ< 1) duct to that of
the unmodified (Λ = 1) duct, at the same N and Ra conditions.

Convergence Study

All simulations reached a time independent state, after which
the maximum change in streamwise velocity was below 10−9,
and the change in spatially averaged Nusselt number less than
10−6 (10−7 for convergence testing). The most stringent set of
conditions, N = 200 and Ra = 104, with Λ = 0.5, were used to
test the sensitivity of Nu to the macro element distribution and
polynomial resolution, as shown in Figure 2. Excellent conver-
gence behaviour is observed (note the scale on the axis).

Figure 2: A plot of spatially averaged Nusselt number against
polynomial order for various meshes, depicting ‘hp’ conver-
gence, at N = 200, Ra = 104, Λ = 0.5, flow directed with grav-
ity. The markers indicate meshes with the following numbers of
elements: [1200, 1280, 1600, 1920, 2000, 2200, 2400] as [©,
5, �, ♦, I, +, A]; the 2200 element mesh is used hereafter.

However, the convergence behaviour is slightly impacted by the
discontinuous change in thermal boundary condition. This in-
troduces small ‘wiggles’ into the interpolating polynomial, as
the Galerkin method only weakly enforces Neumann boundary
conditions [9]. The average heat flux (L−1

s
∫ Ls
−Ls

φw(x)dx) was
computed, for each simulation, to quantify this error, and al-
ways remained within 0.85% of φw =−1. In addition the toler-
ance for Nusselt number calculations (both in y when comput-
ing θ′b and in x for spatial averaging) was maintained at 10−4.

Results

Two regimes are present within the range of simulated condi-



tions, determined by the relative velocity contributions due to
forced and natural convection. When Ra is small and N large,
the flow is forcing dominated, with a ‘U-shaped’ velocity pro-
file, similar in appearance to that depicted in Figure 1. When
Ra is large and N small, natural convection is dominant (or at
least relevant), and the velocity profile tends to that of an ‘S-
shape’, with reversed flow near the heated wall (where buoy-
ancy is strongest). Varying the conducting length fraction, Λ,
has a markedly different effect within these regimes. When the
flow is forcing dominated, the flow velocity is virtually invari-
ant with changes in Λ, and hence the convective capacity of the
flow remains unchanged. However, when the imposed condi-
tions allow the flow to reverse, the natural convective velocity
is found to be proportional to Ra1±1E−8Λ1±1E−8N−1.835∓0.002.
The linear scaling with Λ indicates that as Λ is reduced, natural
convective forces become weaker, and the forced (‘U-shaped’)
profile will eventually return. Hence, at low Λ the flow will
have limited convective capacity for heat transfer, as for a forced
flow, and increasing Λ will provide further increases to convec-
tive heat transport, which is highest at the unmodified Λ = 1
condition.

However, the reason for reducing Λ is to improve thermal gra-
dients at the wall, by disrupting the formation of the thermal
boundary layer. The normalised temperature gradient (ψw) was
calculated at the centre of each conducting section (with nor-
malising through Θ′w = (θ′− θ′c)/(θ

′
h− θ′c), where θ′h and θ′c

represents the fluctuating temperatures at the heated and insu-
lated walls). The normalised temperature gradient was found
to scale with the power law ψw = ψw|Λ=1ΛD1 (R2 > 0.999),
where the constant exhibited minor variation with N within
−0.837 < D1 < −0.739. The scaling was effectively invariant
of Ra and flow direction. Hence, reducing Λ greatly increases
temperature gradients at the wall, at all duct conditions, improv-
ing the efficiency of conduction. Therefore, heat transfer is able
to be promoted if the improvements in conduction efficiency
are not outweighed by the reductions in the flow’s capacity to
convect heat.

Figure 3: A plot of Nusselt number ratio against conducting
length fraction for flows directed with gravity. Variations in
duct conditions are displayed as N = [100,200,400,800,1600]
with markers [©, �, ♦, I, A] and Ra = [102,103,104] with
lines [−·,−−,−] (some are omitted for clarity).

The effect of the improvements to normalised temperature gra-
dient are most clearly depicted within the forcing dominated
regime. Within this regime, the convective capacity of the
flow does not noticeably vary, hence the NuR curves scale as
NuR = NuR|Λ=1ΛD1+1 (R2 > 0.995), as only the temperature

gradients and conducting area (proportional to Λ) are relevant.
Two curves within the forcing dominated regime (at Ra = 102,
N = 200 and Ra = 104, N = 800) are depicted in Figure 3,
and all other forcing dominated conditions fall between these.
Hence, within the forcing dominated regime, heat transfer is
never promoted (NuR < 1) for all reductions in Λ. When the
strength of natural convection increases, such that the forced,
‘U-shaped’ velocity profile is significantly deformed (but the
flow has not reversed), the curves are very similar, and minimal
heat transfer enhancement may occur. However, these condi-
tions, as well as those when natural convection is dominant, in-
dicate that a similar form of power law is obtained to the left of
the peak. This is considered to be a regime where the flow still
has limited convective transport (very low velocities, although
with noticeable variation with Λ), and where enhancements in
heat transfer are driven by improvements to the efficiency of
conduction. Power law fits are also accurately obtained to the
right of the peak, although with the opposite curvature when
natural convection is dominant, hence the thermal boundary
layer thickness is still driving changes in the efficiency of con-
duction, as velocity and area are linear with Λ. However, the
fluid now has ample convective velocity but is conduction lim-
ited, as Λ is too large. Hence, matching the rates of convec-
tion and conduction provides the optimal rate of heat transfer,
with lower Λ convection limited, and higher Λ conduction lim-
ited. The peak enhancement was obtained when natural con-
vection was strongest (Ra = 104, N = 100), with NuR = 3.546
obtained at Λ = 0.0625. Furthermore, although the location
of the peak appears to shift greatly, the flow rate within the
jet adjacent to the heated wall is similar for all cases, between
0.005 <UA < 0.437. This indicates that although the peak heat
transfer is obtained once the flow reverses (an ‘S-shaped’ pro-
file), it is not necessary for heat transfer to be enhanced.

Figure 4: A plot of Nusselt number ratio against conducting
length fraction for flows directed against gravity. Variations in
duct conditions are displayed as N = [100,200,400,800,1600]
with markers [©, �, ♦, I, A] and Ra = [102,103,104] with
lines [−·,−−,−]. The dotted lines are guides for the locations
of the asymptotes where θ′b = θ′w.

When the flow conditions are forcing dominated the orientation
of the flow with respect to gravity has little effect on heat trans-
fer (the minimal improvement or reduction is symmetric about
that for a horizontal duct). However, when natural convection is
dominant, the appearance of the NuR curves, depicted in Fig-
ure 4, differ significantly. Firstly, when the flow is directed
against gravity, and buoyancy aids the forced profile near the
wall, the bulk temperature can reach the wall temperature value



(hence Nu→∞). This never occurs for flow directed with grav-
ity as the forcing acts against buoyancy. However, this should be
thought of as obtaining an “optimal” velocity profile, where the
heat transported by the fluid is exactly that supplied by the wall,
hence heat transfer cannot be further increased. However, at
conditions close to this value, heat transfer enhancement is still
being provided by improved temperature gradients, which act to
bring θ′b closer to θ′w. Secondly negative Nu are obtained when
the flow forms an ‘S-shaped’ profile (large Λ, when θ′b > θ′w),
indicating that more heat is convected in the opposite direction
to the driving pressure gradient. However, these appear as posi-
tive NuR when divided by Nu|Λ=1, which must also be negative
if some Nu|Λ<1 are. Note in any case where the flow reverses,
some of the bulk temperature cancels, and hence the Nu repre-
sents the net heat convected.

Conclusions

Reducing the conduction length fraction is shown to provide
large increases in normalised temperature gradient at the wall.
This scaled as a power law with the form ψw = ψw|Λ=1ΛD

1
(−0.837<D1 <−0.739), which indicates the effect of the con-
ducting length fraction on thermal boundary layer development.
This defines the correlation for the Nusselt number at forcing
dominated conditions, which scale with ΛD1+1, and always re-
sults in reductions in heat transfer with decreasing Λ. These
conditions are considered to be convection limited, due to low
streamwise velocities. Even small increases in streamwise ve-
locity, driven by natural convection (indicated in the flow rate
within the adjacent jet, UA), can provide large increases in heat
transfer, with a definite peak of NuR = 3.5460 (UA = 0.4372)
obtained at Λ = 0.0625, N = 100 and Ra = 104. Further in-
creases in Λ cause corresponding linear increases in the natural
convective velocity (which scaled as RaΛN−1.835). However,
the flow then becomes conduction limited as the thermal bound-
ary layer is not sufficiently disrupted. These regions are also
relevant when the flow direction is reversed (against gravity),
although the asymptotic behaviour exhibited does not allow this
to be observed.
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[16] Pothérat, A. and Kornet, K., The decay of wall-bounded
MHD turbulence at low rm, Journal of Fluid Mechanics,
783, 2015, 605–636.
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