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Abstract

The data processing of random wave field on a shallow water
is developed on the basis of the inverse scattering transform.
The soliton component obscured in a random wave field is de-
termined and the corresponding distribution function of number
of solitons on their amplitudes is constructed. The approach de-
veloped is illustrated by means of a model quasi-random wave
field and applied to the real data interpretation of wind waves
generated in the laboratory wind tank.

Introduction

The traditional approach in the problem of wind wave study is
based on the analysis of Fourier spectra and determination of
their peculiarities. There is a vast number of both theoretical
and experimental papers where this problem has been consid-
ered; it is impossible to list all of them here. Therefore, we re-
fer only to the old review chapter “Wind waves” by Zaslavsky
and Monin in the book [8] and recent Proceedings of IUTAM
Symposium on Wind Waves [7] where a reader can find key ref-
erences in this field. Many interesting and useful informations
have been obtained about wind waves in terms of Fourier spec-
tra. However one of the serious obstacles making the Fourier
analysis ineffective in application to surface oceanic waves is
the nonlinear character of such waves, whereas the Fourier anal-
ysis is the linear operation applicable to the systems obeying the
superposition principle.

Osborne with co-authors (see, e. g., [11, 12, 13, 14, 15] and ref-
erences therein) has developed the method of nonlinear spectral
analysis of shallow water waves described by the Korteweg–de
Vries (KdV) equation. Osborne’s approach is based on the ap-
plication of the inverse scattering method (ISM) to the analysis
of random field data in one-dimensional space domain with the
periodic boundary conditions. The main idea of his approach
was in the presentation of complex initial disturbance in terms
of a set of elliptic functions (cnoidal waves). These functions
can be considered as the nonlinear eigenmodes which are pre-
served in the process of wave field evolution in contrast to the
linear sinusoidal eigenmodes. This means that a nonlinear wave
spectrum calculated on the basis of these modes is invariant in
time while a usual Fourier spectrum is variable due to the non-
linear interactions between the different sinusoidal harmonics.
The important feature of nonlinear eigenmodes is that the non-
linear spectrum naturally reduces to the Fourier spectrum, if the
analyzed wave field is quasi-linear. However, the mathematical
and numerical machinery used for the calculation of nonlinear
eigenmodes is not so simple in contrast to the linear case.

Here we propose a very similar to Osborne’s, but a bit differ-
ent approach to the analysis of random water waves that is also
based on the application of ISM. The essential feature of our
approach is the interpretation of a random initial wave field in
terms of the ensemble of solitons and quasi-linear ripples rather
than the set of elliptic eigenmodes (a similar approach was also

realised in [2]). The idea is illustrated by an example of shal-
low water waves described by the classical KdV equation with
the random initial data. If one takes some portion of random
field data (which should be long enough), the number of soli-
tons, their amplitudes, speeds, characteristic durations, etc., can
be calculated then by means of ISM or by the direct numerical
simulation of the corresponding KdV equation. In the mean-
time, the knowledge of number of solitons obscured in the ran-
dom wave field, their parameters and statistics is a matter of
independent interest per se. We describe our approach below
and give some examples.

As well-known, the soliton turbulence of rarefied soliton en-
sembles in strongly integrable systems is trivial to certain ex-
tent – the distribution function of solitons is unchanged in time
[17] (the definition of strongly and weakly integrable systems
is given in [17]). This is a consequence of a trivial character of
soliton interactions in such systems. The solitons do not change
their parameters after collisions, and only the paired collisions
occur between them. However, the dynamics of a dense ensem-
ble of solitons is more complicated and soliton turbulence is
nontrivial even in the integrable nonlinear wave equations [4, 5].
The quantitative criterion of “dense soliton gas” was introduced
in these papers and was shown that the density of soliton gas
is bounded from above. The critical gas density, apparently,
depends on soliton distribution function, which makes impor-
tant the determination of such function in a particular physical
problem such as a water wave turbulence. The numerical ex-
periments supporting the developed theory [4] for the particular
model distribution functions were reported in [1].

The KdV model considered here is the typical example of
strongly integrable system applicable to the real physical field.
This makes topical the development of handy methods of ex-
traction of soliton distribution function from the natural com-
plex wave fields. One of the experimental approaches to the
solution of this practical problem has been considered for inter-
nal waves in Okhotsk Sea [10] and another example of process-
ing of surface wave observational data has been reported in [2].
We hope, this publication will stimulate further interest to this
important problem.

The Korteweg–de Vries model and data processing

Let us assume that there is a data of recorded surface waves
at some fixed point x0 of a shallow-water basin. So that the
elevation η of the water level at this point is the known function
of time: η(x0, t) = f (t) where f (t) is a random function. For
the description of further space evolution of data recorded at the
point x0, the timelike KdV (TKDV) equation [14] is used:
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In the process of evolution of an initial perturbation one can
expect emergence of a number of solitons with different ampli-
tudes and phases. Soliton solution to the TKdV equation (1) has
the form:

η(x, t) = Asech2 t− x/V
T

, (2)

where the parameters V and T are related to the amplitude A:
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the approximate formula is valid for small amplitude solitons
when c0αA/3� 1.

Inasmuch as solitons are very stable with respect to interaction
with others wave perturbations and influence of external effects
(such as viscosity, inhomogeneity, etc), it is a matter of inter-
est to extract them from the irregular components of a wave
field and to describe their statistical properties and contribution
to the total wave energy. This can be done by the following
way. Let us consider a very long portion of recorded measure-
ment data of surface perturbation at any given point x0. The
characteristic duration of this portion Tp is assumed to be much
greater than the typical soliton time scale T . Let us represent a
perturbation with the help of some dimensionless function ϕ(t):
η(0, t) = Uϕ(t/Tp), where U is the characteristic wave “am-
plitude”, e.g., the maximum value of perturbation η(0, t) in the
considered portion of data.

By means of the transformation τ = (t− x/c0)/Tp, ξ =
−αUx/Tp, u = η/U , Eq. (1) and the corresponding initial
condition η(0, t) can be reduced to the standard form [9]:

uξ +uuτ +uτττ/σ
2 = 0, u(0,τ) = ϕ(τ) (4)

with one dimensionless parameter σ2 known in the oceanogra-
phy as the Ursel parameter and defined as σ2 = αUT 2

p /β.

As it was mentioned above, we consider the case when the du-
ration of the perturbation is long enough, so that σ2� 1. In this
case the number of solitons obscured in the “initial” perturba-
tion is also very big in general, and it is reasonable to describe
them by the distribution function f (A). This function deter-
mines the number of solitons dN within the interval (A, A+dA)
[9]: dN = f (A)dA. According to the theory developed in [9],
the distribution function can be calculated at large values of σ

by means of the formula:

f (A) =
σ
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where the interval of integration L is determined by the condi-
tion 2Uϕ(τ)> A.

As follows from Eq. (5), soliton amplitudes are distributed in
the interval [9] 0 < A < 2Umax[ϕ(τ)], and their total number
can be found from the formula
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Therefore for large σ the total number of solitons is determined
only by those intervals of τ-axis where function ϕ(τ) is nonneg-
ative!

As well known, the KdV equation possesses an infinite num-
ber of conserved densities In (see, e.g., [9, 12]). One of them,

I2 =
∫

η2(x, t)dt with the integration performed from minus to
plus infinity is proportional to the wave energy and therefore is
of a special physical interest. The fraction of energy of a non-
soliton component of a perturbation to the total energy of initial
perturbation can be determined by means of the following for-
mula [9]:
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The total energy of a soliton component in the wave field can be
readily calculated, if soliton amplitudes are known:
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In the last expression the values of coefficients α and β for sur-
face water waves were used (see above after Eq. (1)).

Laboratory experiment with wind waves on shallow water

The theory developed above was applied to the data process-
ing on laboratory experiments with wind wave generation. The
experiments were conducted in the Luminy (Marseilles) small
tank having the following sizes (length × width × height): 865
cm × 64 cm × 50 cm. The water depth in the tank in differ-
ent experiments ranged from 1 cm to 8 cm: h = 1, 2, 3, 4, 6,
and 8 cm. Surface waves were generated by a wind blowing
up over the water surface with the different mean velocities:
Vw = 5.29, 6.45, 8.62 and 13.24 m/s. At the opposite end of the
tank it was placed a wave absorber to exclude reflected waves.
Two sensitive electric probes recording water level were placed
at the distances 100 cm and 300 cm from the ventilator. The
detailed description of experimental set up can be found in [6].

Here we present the analysis of only one of the series of ex-
periments with the water depth h = 1 cm and wind velocity
Vw = 5.29 m/s. Other experimental series were analysed in a
similar way. Wind waves generated by permanently blowing
wind is an active system, i.e., the system with the permanent
energy pumping at each point of water surface. Moreover, a
distributed external force due to wind is not a constant, it varies
from some maximum value near the ventilator to a smaller value
at the opposite end of the tank. This leads to the different soliton
distribution functions measured at two different distances from
the ventilator. A small water viscosity also affects the soliton
distribution function.

Another difficulty with wind generated surface waves is the ef-
fective excitation of high frequency Fourier components, so that
the essential portion of wave energy is contained in that part of
the Fourier spectrum which is beyond the range of validity of
TKdV equation. Therefore we were forced to restrict our anal-
ysis by only low-frequency components of the wave spectrum
for ω�ωcr = 76.7 s−1. Figure 1 presents the Fourier spectrum
of wind waves recorded at two distances from the ventilator as
indicated above. Therefore, to satisfy this condition, we cut the
Fourier spectra of wind waves at ωlim = 13.4 s−1 (see dashed
vertical line in Fig. 1) and ignored the high frequency portions
of wave spectra above ωlim.

The filtered fragments of 60-second duration records in two spa-
tial points at the distances 100 cm and 300 cm from the venti-
lator are shown in Fig. 2. There is a visible difference between
the wave fields shown in frames (a) and (b). This is a manifes-
tation of the wave fetch effect on longer distances. In the result
of this the statistics of obscured solitons in the record of frame
b) is essentially richer than in the frame a).
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Figure 1: Fourier spectrum of wind waves generated in the lab-
oratory tank at two different distances from the ventilator. Solid
line 1 – pertains to the spectrum at the distance 100 cm from the
ventilator, and dashed line 2 – to the distance 300 cm.
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Figure 2: Fragments of low-frequency components of surface
perturbations generated by wind in two spatial points of mea-
surements in the tank. Frame a) – surface perturbation at the
distance 100 cm; frame b) – at the distance 300 cm.

The recorded data shown in Fig. 2 were used as the input for the
TKdV equation (4). In the statistically equilibrium state each
60-second portion of recorded data is equivalent to the same
portion taken at a different time interval, therefore one can ex-
pect that the number of solitons obscured in each portion of data
is the same in average and their distribution function is invari-
ant with respect to the time shift. This was confirmed in the data
processing.

The TKdV equation (4) was solved numerically using the
recorded data of 60 sec duration from the total time interval
of 208 sec. After a while solitons emerged from the quasi-
random data and their amplitudes were easily determined with
the help of a special subroutine. This allowed us to determine
the histogram of soliton numbers in the each particular interval
of amplitudes A+∆A (the analogue of a differential distribution
function). On the basis of this histogram we determined also
the integral (cumulative) distribution function – the total num-
ber of solitons with the amplitudes less than A normalised by
the total number of all solitons. Figure 3 demonstrates the his-
togram of soliton numbers versus amplitudes for the time series
shown in Fig. 2. The experimental data can be approximated by

the Poisson distribution function P(n) = λne−λ/n!, where the
parameter λ = 3.85 for the histogram shown in frame (a) and
λ = 4.94 for the histogram shown in frame (b).
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Figure 3: The histogram of soliton numbers versus soliton am-
plitudes for the time series shown in Fig. 2. Lines 1 reflects
experimental data, lines 2 are the best fit of these data by the
Poisson distribution functions.
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Figure 4: The integral (cumulative) distribution functions
(lines) for the experimental data shown in Fig. 2. Lines 2 rep-
resent the best fit approximation with the Poisson cumulative
distribution functions with the same parameters λ as in Fig. 3.

The corresponding integral distribution functions for the exper-
imental data of Fig. 2 are shown in Fig. 4 (lines 1) together with
the approximative Poisson integral functions with the same pa-
rameters as in Fig. 3. The total number of solitons emerged from
the wave field shown in Fig. 2a) was 60, and emerged from the
wave field shown in Fig. 2b) was 86. As expected, the time
series recorded closer to the ventilator (Fig. 2a) contained less
number of solitons than the time series recorded further from
the ventilator (Fig. 2b). In the latter case the wave field was
much better developed due to the influence of wave fetch.

If we assume that all 60 solitons in the time series shown if
Fig. 3a) are uniformly distributed in the time interval of 60 s,
then we obtain that the time interval per each soliton is ∆T1 = 1
s. As follows from the histogram shown in Fig. 3a) the maxi-
mal number of solitons have amplitudes Am1 = 0.02 cm and the
duration Ts1 = 0.026 s. Therefore ∆T1/Ts1 ≈ 3.85. The simi-
lar estimates for the time series shown if Fig. 3b) give the time
interval per each soliton ∆T2 ≈ 0.7 s. As follows from the his-
togram shown in Fig. 3b) the maximal number of solitons in
this time series have amplitudes Am2 = 0.05 cm and the dura-
tion Ts2 = 0.165 s. Therefore ∆T2/Ts2 ≈ 4.2. This shows that in
both cases the “soliton gas” is very dense (cf. [4, 16]). The frag-
ments of numerical calculations presented in Fig. 5 illustrate the
soliton gas density in both time series.

Conclusions

To analyze long random time series of water waves in shallow
basins we have proposed an approach which differs from the tra-
ditionally used Fourier analysis. Our approach is based on the
extraction of obscured solitons from the complex wave fields
and construction of histograms of solitons at different points of
observation. According to the theoretical conception, a soliton
component of a wave field in the well-developed nonlinear per-
turbations should dominate. The number and individual param-
eters of solitons are preserved in the conservative statistically
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Figure 5: The fragments of numerical calculations with the in-
put data taken from Fig. 2 illustrating the soliton gas density in
both time series.

homogeneous systems [17], therefore the distribution function
(or histograms of solitons) remains the same at different points
of observation, if the dissipative factors (i.e., viscosity or ex-
ternal sources of energy) are negligible. In contrast to that the
Fourier spectrum changes due to nonlinearity.

Our approach is in line with the contemporary development
of the theory of strong turbulence in the integrable or near-
integrable systems [1, 2, 3, 4, 5, 16, 17]. Experimentally con-
structed distribution function can be used for the determination
of degree of density of a soliton gas and its closeness to the
critical value defined in [4, 16]. The results obtained here are
supplementary to the results of field experiments reported in [2].

A small dissipation can cause a gradual decay of soliton his-
tograms and their distortion, in general. This effects can de-
pend, apparently, on the specific type of dissipation. The ap-
proach briefly described in this paper (the details can be found
in the recent publication [6]) can provide some additional infor-
mation about the energy distribution in natural wave fields such
as the relationship between the soliton and nonsoliton compo-
nents obscured in the fields. This can help researchers to es-
timate the intensity of external sources or sinks of energy in
the wave turbulence. The approach in its current form is appli-
cable to the KdV-like systems, e.g., shallow-water waves (see,
e.g., [3] where the turbulence of soliton gas was studied both
within the integrable KdV and non-integrable KdV-BBM equa-
tions). Its generalization to the internal waves described by the
Benjamin–Ono equation or surface deep-water waves described
by the nonlinear Shrödinger equation is an interesting and chal-
lenging problem (see [13]).
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