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Abstract

The physics of pulsatile rough-wall turbulent pipe flow is in-
vestigated using data from direct numerical simulation (DNS).
Three geometrically-scaled sinusoidal roughness topographies
are considered — the amplitude and wavelength of each sur-
face are systematically varied whilst holding their amplitude-to-
wavelength ratio constant. Pulsation is achieved by imposing a
time-harmonic axial pressure gradient. The resulting flow-field
is triple phase-averaged (in two spatial directions and also in
time) which permits a quadruple decomposition of the instan-
taneous field variables to be invoked. The four components of
the quadruple decomposition are: (i) a global-averaged mean
component; (ii) a steady roughness-induced fluctuation; (iii) an
unsteady pulsation-induced fluctuation and (iv) the remaining
turbulent fluctuation. We compare statistics of (i)-(iv) against
their non-pulsatile counterpart using past results from related
work [1, 2]. Whilst the pulsatile and non-pulsatile data collapse
well in the outer region, clear differences are observed in the
near-roughness region. In particular, profiles of the mean ax-
ial velocity, roughness-induced stress and turbulence-induced
stress exhibit consistently lower magnitudes below the rough-
ness crests under pulsatile conditions.

Introduction

Pulsatile rough-wall flows appear regularly in nature and engi-
neering. For example, the fluid dynamic properties of circu-
latory systems and rotating machinery are both strongly influ-
enced by flow unsteadiness and surface roughness. Pulsating
smooth-wall flows have been studied extensively under laminar
[12], transitional [13] and fully-turbulent [9] conditions across
a wide range of forcing parameters. Roughness effects are also
well-documented in the context of steady pressure gradient tur-
bulent flows [3]. In contrast, studies of pulsatile rough-wall tur-
bulent flows remain scarce throughout the literature.

This study focuses on current-dominated (CD) pulsatile rough-
wall turbulent pipe flow in the very-high-frequency (VHF)
regime. In the absence of roughness, such a flow can be char-
acterised by three non-dimensional parameters: (i) the friction
Reynolds number, Reτ; (ii) the inner-scaled forcing frequency,
ω+, and (iii) the ratio of the oscillating centre-line velocity to
the bulk velocity, β. Parameters (i)-(iii) are defined here as

Reτ ≡
uτR
ν

, ω
+ ≡ ων

u2
τ

, β≡ Uo

Ub
(1)

where uτ is the friction velocity, R is the pipe radius, ν is the
kinematic viscosity, Uo is oscillating centre-line velocity and
Ub is the bulk velocity.

The CD regime is attained when the ratio of the oscillating
centre-line velocity to the bulk velocity is less than one (β < 1)
[6]. The VHF regime is defined by the forcing frequency, ω+,
and the Stokes length, `+s , which are related through the formula
ω+ = 2/`+

2

s . Past studies [7, 9] have identified the onset of the
VHF regime for forcing frequencies in excess of ω+ > 0.04,
corresponding to a Stokes length of l+s . 7. Under these condi-

tions, the Stokes boundary-layer is confined to the viscous sub-
layer and is governed by Womersley’s laminar solution [12],
whereas turbulence statistics appear “frozen” and collapse on
top of their non-pulsatile counterpart. Whilst the characteristic
behaviours of the CD-VHF regime have been widely reported
in the context of pulsatile smooth-wall pipe flow, their applica-
bility in the presence of surface roughness remains unclear.

The principal effect of surface roughness is to cause a down-
ward shift in the mean velocity profile, relative to the smooth-
wall case. The rise in momentum deficit is quantified via the
roughness function, ∆U+, which appears as an additive constant
in the log-law. The magnitude of ∆U+ is known to be a function
of the characteristic roughness height and the roughness topog-
raphy. For example, the sensitivity of ∆U+ to the amplitude and
wavelength of three-dimensional sinusoidal roughness has been
systematically demonstrated for non-pulsatile rough-wall pipe
flows [1]. Related work has also compared the relative magni-
tude of roughness-induced and turbulence-induced stresses for
the same sinusoidal roughness topographies under non-pulsatile
conditions [2] based on a triple decomposition of the instanta-
neous flow field using a double-averaging (DA) framework [8].
Such an averaging framework can be naturally extended to pul-
sating rough-wall flows by absorbing temporal phase-averaging
techniques [10] into the DA methodology with the aim of isolat-
ing the pulsation-induced, roughness-induced and turbulence-
induced fluctuations.

To recap, whilst the flow physics of smooth-wall pulsating pipe
flow and rough-wall non-pulsating pipe flow have been inves-
tigated in substantial separate detail, studies that focus on their
combined effect remain rare. As a result, many fluid dynamic
properties of pulsatile rough-wall turbulent pipe flows are un-
clear. For example, the relative magnitude of pulsation-induced,
roughness-induced and turbulence-induced stresses in the con-
text of the CD-VHF regime have yet to be considered in detail.

Objectives of the present study

The principal interest here is to obtain a statistical descrip-
tion of a pulsatile rough-wall turbulent pipe flow in the CD-
VHF regime in order to draw a direct comparison against
its non-pulsatile counterpart. To this end, the objectives of
this study are: (i) establish an averaging framework suitable
for the decomposition of pulsatile rough-wall turbulent pipe
flows; (ii) evaluate and compare the relative magnitudes of the
roughness-induced, pulsation-induced and turbulence-induced
stresses across a set of systematically varied roughness topogra-
phies and (iii) identify any key differences between the statis-
tical descriptions of the pulsatile and non-pulsatile rough-wall
pipe flow configurations. To the best of authors’ knowledge,
points (i)-(iii) remain unaddressed in the literature.

Computational setup and simulation parameters

In this work, data from a DNS was used to study incompressible
pulsatile turbulent flow through a pipe roughened with three-
dimensional sinusoidal elements. A body-fitted mesh was used
to explicitly resolve the rough-walls where impermeable, no-



slip boundary conditions were applied. A periodic boundary
condition was applied to the ends of the pipe. The Navier-
Stokes and continuity equations were solved in Cartesian co-
ordinates on an “O-grid” mesh using code CDP [4]. Further
details can be found in past studies related to the current work
[1, 2].

Throughout this study, the cylindrical velocity components ui =
(ux,ur,uθ) are aligned along their respective axial (x), radial (r)
and azimuthal (θ) coordinates. The pipe has a length of Lx =
2πR0 where R0 is the mean pipe radius. All simulations were
conducted at a nominal friction Reynolds number of Reτ = 540.
The maximum viscous-scaled mean grid spacings at the wall in
the axial

(
∆x+w

)
, radial

(
∆r+w

)
and azimuthal

(
∆θ+w

)
direction

are 4.1, 0.15 and 4.0, respectively.

The roughness topography follows the cosine distribution

R(x,θ)−R0 = hcos
(

2πx
λx

)
cos
(

2πR0θ

λθ

)
(2)

where h is the roughness semi-amplitude and (λx,λθ) are the
axial-azimuthal wavelengths. This study focuses on isotropic
roughness elements, i.e. λx = λθ = λ, which were geometrically
scaled to a common aspect ratio, h/λ. In total, three roughness
topographies were considered — details are listed in table 1.

Pulsation is achieved by imposing a time-varying axial pressure
gradient, Π(t), which can be written as

Π(t) =−Π0 [1+Acos(ωt)] (3)

where Π0 is the constant mean axial pressure gradient and
where A and ω are the amplitude and frequency of the oscil-
latory pressure gradient component. All simulations were per-
formed with an amplitude ratio β = 0.06 and a forcing fre-
quency of ω+ = 0.0582, giving a Stokes length of l+s = 2.42.

Quadruple decomposition of instantaneous flow-field

Considering the doubly-periodicity of the roughness topogra-
phy (equation 2) and time-harmonic pressure gradient (equa-
tion 3), any instantaneous field variable, say f , can be phase-
averaged (PA) twice in space and once in time. Temporal phase,
φt , and axial-azimuthal phase, (φx,φθ), are defined here as

(φx,φθ,φt)≡
[(

x
λx

,
θ

λθ

,
t
T

)
mod 1

]
(4)

where T is the cycle period and mod is the modulo operator.

A PA quantity, 〈 f 〉, is defined here as

〈 f 〉 ≡ lim
N→∞

1
N

1
kx

1
kθ

N−1

∑
n=0

kx−1

∑
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kθ−1

∑
q=0

f
(
x′′,r,θ′′, t ′′

)
(5)

where N is the number of pulsation cycles, (kx,kθ) is
the axial-azimuthal wavenumber pair and superscript double-
prime denotes phase-shifted coordinates, i.e. (x′′,θ′′, t ′′) =
(x+ pλx,θ+qλθ, t +nT ). All PA quantities reported in this
work were computed using a sampling period of eight pulsation
cycles (N = 8) with twenty evenly spaced points per cycle.

A global-averaged (GA) quantity, f , is obtained by integrating
the PA (equation 5) with respect to spatial-temporal phase

f (r)≡ 1
T

1
λx

1
λθ

T
∫
0

λx
∫
0

λθ

∫
0
〈 f 〉(φx,r,φθ,φt)dφθdφxdφt (6)

The difference between the PA (equation 5) and the GA (equa-
tion 6) defines the total phase-averaged fluctuation, ˜̂f , as

˜̂f (φx,r,φθ,φt)≡ 〈 f 〉(φx,r,φθ,φt)− f (r) (7)

which contains the combined effect of the pulsation-induced
(PI) and roughness-induced (RI) fluctuations.

The unsteady PI fluctuation, f̂ , is isolated by integrating equa-
tion 7 with respect to axial-azimuthal phase

f̂ (r,φt)≡
1
λx

1
λθ

λx
∫
0

λθ

∫
0

˜̂f (φx,r,φθ,φt)dφθdφx (8)

Similarly, the steady RI fluctuation, f̃ , is isolated by integrating
equation 7 with respect to temporal phase

f̃ (φx,r,φθ)≡
1
T

T
∫
0

˜̂f (φx,r,φθ,φt)dφt (9)

Taking equations 5-9 into consideration, the quadruple decom-
position of instantaneous axial velocity, ux, can be written as

ux (x, t) = ux (r)+ ũx (x)+ ûx (r, t)+u′x (x, t) (10)

where u′x (x, t) denotes the stochastic fluctuation. In the absence
roughness, i.e. ũi (x) ≡ 0, the quadruple decomposition 10 re-
duces to the original triple decomposition devised to analyse
pulsatile smooth-wall turbulent flow [10].

The quadruple decomposition of instantaneous axial velocity
for surface h40λ283 at an azimuthal-temporal phase of (φθ,φt) =
(0,0.25) is shown in figure 1. Some initial observations based
on this data include: (i) The GA component, ux, is, as expected,
inhomogeneous in the wall-normal direction; (ii) beyond a
height of approximately four semi-amplitudes (y/h& 4), the
magnitude of the RI fluctuation, ũx, becomes negligible —
corresponding to the upper edge of the roughness layer; (iii)
within closer proximity of the roughness crests (y/h. 1), ũx
becomes predominantly negative — reflecting the deficit of ax-
ial momentum in this region; (iv) the PI fluctuation, ûx, is com-
prised of a thin shear-layer in the near-wall region (y/h� 1)
and “plug-flow” in the outer layer and (v) the stochastic fluctu-
ation, u′x, reveals inclined and elongated structures synonymous
with wall-bounded turbulence. Whilst the basic structure of pul-
satile rough-wall pipe flow can be drawn from figure 1, a better
understanding can be gained by analysing statistical quantities.

Quadruple decomposition of GA axial velocity statistics

Profiles of GA axial velocity, ux, are shown in figure 2a. The
pulsatile and non-pulsatile rough-wall data collapse well in the
outer region for each surface and, as a result, the roughness
functions, ∆U+, are approximately equal (see table 1). Such
a collapse is not, however, observed in the near-roughness re-
gion. For example, below the roughness crests (y/h < 1), the
GA axial velocity profiles of the pulsatile data show a consis-
tently lower value than their steady counterpart (see inset panel
figure 2a). This observation is in contrast to the non-pulsatile
and pulsatile smooth-wall data — which collapses for all wall-
normal positions in the CD-VHF regime [7, 9].

Profiles of the RMS RI stress, ũx,rms =

√
(ux− [ux + ûx])

2, are
shown in figure 2b. Similar to the GA axial velocity profiles
shown in figure 2a, the profiles of ũx,rms collapse well in the
outer-region. In-line with recent findings of [2], the RI stresses
increases with increasing roughness height

(
h+
)

and persist
well into the log-law region. For example, at a height of one
hundred wall-units

(
y+ = 100

)
the RI stress induced by surface

h80λ565 retains 50% of its peak value. The maximum RI stress
for the pulsatile and non-pulsatile data occurs just above the
roughness crests (y/h≈ 1), where the former exhibits a slightly
larger magnitude. Below the roughness crests, the RI stress pro-
files exhibit the same behaviour as the GA axial velocity pro-
files (figure 2a) whereby the pulsatile stress profiles “peel-off”



Case kx kθ h/λ λ/R0 R0/h h+ λ+ k+a k+rms ES ∆U+ Line
h20λ141 48 24 0.141 π/12 27 20.0 141 8.11 10.0 0.36 6.25 ( )
h40λ283 24 12 0.141 π/6 14 40.0 283 16.2 20.0 0.36 8.87 ( )
h80λ565 12 8 0.141 π/3 7 80.0 565 32.4 40.0 0.36 11.83 (. . . . .)

Table 1: Roughness parameters including: axial-azimuthal wavenumber pair, (kx,kθ); ratio of roughness semi-amplitude to roughness
wavelength, h/λ, roughness wavelength to mean pipe radius, λ/R0, and mean pipe radius to roughness semi-amplitude, R0/h; viscous-
scaled roughness semi-amplitude, h+, roughness wavelength, λ+, mean absolute roughness height, k+a , root-mean-square roughness
height, k+rms, and effective slope, ES. The roughness function, ∆U+, is also included for each surface.

Figure 1: Quadruple decomposition of instantaneous axial velocity, ux, including the: (a) GA component, ux; (b) steady RI component,
ũx; (c) unsteady PI component, ûx, and (d) the turbulent component, u′x. Data corresponds to an azimuthal-temporal phase of (φθ,φt) =
(0,0.25) and has been normalised by the mean friction velocity, uτ, the roughness semi-amplitude, h, and the roughness wavelength, λ.
The height of the mean pipe radius, R0, is marked by the horizontal dotted line.

from their non-pulsatile counterpart. The inset panel figure 2b
shows profiles of ũx,rms plotted against the wall-normal height
normalised by the roughness semi-amplitude (y/h). The pro-
files collapse in the vicinity of the roughness crests (y/h≈ 1)
and attain a negligible magnitude above a height of approxi-
mately four semi-amplitudes (y/h& 4) — which agrees well
with the thickness of the roughness layer shown in figure 1b.

Profiles of the RMS PI stress, ûx,rms =

√
(ux− [ux + ũx])

2, are
shown in figure 2c. In the outer flow, the smooth- and rough-
wall data collapse where the horizontal nature of the stress pro-
file indicates a shear-free “plug-flow” region. The peak value
of ûx,rms approximately coincides with the roughness crests
(y/h≈ 1) and is invariant with respect to the roughness height(
h+
)
. In addition, for all roughness topographies considered

so far, the peak value of ûx,rms exceeds that of the smooth-
wall. It is worth noting that the velocity profile of the smooth-
wall Stokes-layer is strictly one-dimensional (ûr = ûθ = 0),
whereas, for the rough-wall configurations, a three-dimensional
Stokes-layer occurs. Furthermore, the off-diagonal components
of the PI stress tensor, ûiû j, become non-zero — enabling addi-
tional mechanisms of momentum transport throughout the os-
cillating near-wall layer. Whilst the contributions of the RI
shear stress and the Reynolds shear stress to the balance of GA
axial momentum are well-documented in the context of non-
pulsatile rough-wall flows [5], additional mechanisms must be
accounted for in the presence of pulsation. For example, it is
anticipated that the wall-normal gradient of the GA PI shear
stress, i.e. −∂ûxûr/∂xr, will influence the mean flow dynamics
of pulsatile rough-wall pipe flow in the near-wall region.

Profiles of the RMS Reynolds stress, u′x,rms =

√
(ux−〈ux〉)2,

are shown in figure 2d. Similar to the GA profiles of mean
velocity (figure 2a) and RMS RI stress (figure 2b), the pul-
satile and non-pulsatile data agree well in the outer region —
offering support for Townsend’s outer-layer similarity hypoth-

esis [11]. The peak RMS Reynolds stress occurs just above
the roughness crests and its magnitude is comparable to that of
the non-pulsatile value. In contrast, below the roughness crests
(y/h < 1) the profiles of u′x,rms exhibit a similar behaviour pre-
viously observed in figure 2a and figure 2b, whereby the magni-
tude of the RMS Reynolds stress in the lower part of the rough-
ness canopies becomes suppressed, relative to the non-pulsatile
rough-wall data.

Discussion

Pulsatile rough-wall turbulent pipe flow in the CD-VHF regime
has been investigated using DNS at a friction Reynolds num-
ber of Reτ = 540. Using data from an equivalent non-pulsatile
dataset at the same friction Reynolds number [1, 2], a direct
comparison between the two flow configurations was made.
Statistical quantities were computed following a quadruple de-
composition of the instantaneous axial velocity (equation 10).
Based on an analysis of the GA statistics, the key observations
of this study include: (i) excellent collapse in the outer-layer
profiles of mean velocity (figure 2a), RMS RI stress (figure
2b) and RMS Reynolds stress (figure 2d) are observed between
the non-pulsatile and pulsatile data — amounting to consider-
able supporting evidence of Townsend’s outer-layer similarity
hypothesis for rough-wall pulsatile flow; (ii) the peak value
of PI stress is enhanced in the presence of surface roughness
(figure 2c) — which we anticipate to be related to the three-
dimensionalisation of the rough-wall Stokes-layer and (iii) be-
low the highest roughness crest (y/h < 1) the magnitudes of
GA mean velocity (figure 2a), RMS RI stress (figure 2b) and
RMS Reynolds stress (figure 2d) show consistently lower val-
ues than their non-pulsatile counterparts. Considering these
differences, future work will focus on the near-roughness re-
gion where phase-averaged statistics of the roughness-induced,
pulsation-induced and turbulence-induced fluctuations will be
examined in detail.

Themes: Turbulence, Computational fluid dynamics, Bound-



Figure 2: GA axial velocity statistics including: (a) mean ve-
locity profile; (b) RMS RI stress; (c) RMS PI stress and (d)
RMS Reynolds stress. Line types for pulsatile rough-wall
data are given in table 1. Data for smooth-wall non-pulsatile
(◦), smooth-wall pulsatile ( ) and non-pulsatile rough-wall
cases h20λ141 (×), h40λ283 (�) and h80λ565 (4) from [1, 2] are
also included for Reτ = 540. Vertical lines indicate the rough-
ness crests.

ary layers.
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