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Abstract 

The bottom of a river is usually hot owing to the presence of 

various plants and in turn natural convection flows occur in a 

river. In this study, the transition of natural convection flows 

in the V-shaped cavity heated from below is numerically 

investigated. A wide range of Rayleigh numbers from 100 to 

106, the Prandtl number of 7 and the aspect ratio of 0.5 is 

considered. Numerical results show that a sequence of 

bifurcations may occur as the Rayleigh number increases, 

including a pitchfork bifurcation from a symmetrical to an 

asymmetrical state and a Hopf bifurcation from a steady to an 

unsteady state. The critical Rayleigh numbers for different 

bifurcations are obtained based on a great number of 

numerical tests. The spectral analysis is also employed to 

study the oscillations of natural convection flows in the cavity 

and the fundamental frequency is obtained.  

Introduction  

Natural convection is common in nature and thus has received 

increasing attention. In particular, natural convection in a 

cavity has been investigated by many investigators owing to 

the simple geometry [1]. Natural convection in the cavity 

usually involves two scenarios for which the cavity is imposed 

by a vertical temperature gradient or by a horizontal 

temperature gradient. One of the earliest studies of natural 

convection in the cavity imposed by a horizontal temperature 

difference was reported in [1], which demonstrated that the 

mode of heat transfer is primarily dominated by conduction 

for sufficiently small Rayleigh numbers. However, natural 

convection flows are dominated by convection if the Rayleigh 

number exceeds the critical value. Natural convection flows at 

the primary symmetric state in the cavity are induced through 

the viscous shear by the baroclinity [2]. The thermal boundary 

layer adjacent to the vertical wall is steady for small Rayleigh 

numbers, but distinct travelling waves appear in the thermal 

boundary layer owing to convective instability for sufficiently 

large Rayleigh numbers [3]. Apart from natural convection 

flows driven by the baroclinity, natural convection flows 

induced by a vertical temperature difference (Rayleigh-Bénard 

instability) are also extensively present and considerably 

studied [4]. Particularly, turbulent Rayleigh-Bénard 

convection in the cavity is recently focused by increasing 

investigators (see e.g., [5]).  

A square or rectangular cavity is not an adequate model for 

many industrial systems and geophysical situations in which 

the cavity geometry varies or involves one or more inclined 

walls. Natural convection flows on an inclined surface, termed 

as ‘anabatic flow’ or ‘katabatic flow’, are also common in 

nature such as in a valley [6]. Naturally, natural convection 

flows in a cavity with one or more inclined walls have been 

increasingly studied owing to their wide presence [7]. In fact, 

natural convection flows in a triangular cavity are an 

important extension of Rayleigh-Bénard convection [8]. 

Therefore, the dynamics and heat transfer of natural 

convection flows in an attic-shaped cavity imposed by an 

inverse temperature gradient are investigated in previous 

studies [9,10]. The transition from symmetric to asymmetric 

flow is discussed in [11] in which a Pitchfork bifurcation is 

characterized with the increase of the Grashof number and 

validated by the experimental data. Recently, transient natural 

convection flows in the attic-shaped cavity have also been 

visualized in [12]. The development of transient flows 

following sudden heating and cooling is classified into three 

distinct stages: an initial stage, a transitional stage, and a 

steady or quasi-steady stage. 

Natural convection flows of initially stratified fluid in a V-

shaped cavity are investigated by few researchers [8,13]. Their 

intension is aimed at understanding of the mechanism for 

appearance and disappearance of fog in a valley. The 

experiment in [8] visualizes the breakup of the stratified 

structure in a V-shaped water tank in which two flow 

configurations are described. Recently, Bhowmick et al. [13] 

also observed natural convection flows of the initially 

stratified fluid in the cavity suddenly heated from below. The 

intrusion flow is discharged from the mid height of the cavity 

at which the temperature is the same as that of the inclined 

wall. In the early time of the transitional stage, the flow 

becomes chaotic for large Rayleigh numbers. Stratification is 

completely destroyed with the increase of time and finally the 

temperature of the fluid in the whole cavity becomes uniform. 

Additionally, turbulent natural convection flows in the V-

shaped cavity have also been investigated and heat transfer 

through the cavity is calculated in [14]. 

The literature review shows that there are few studies of 

natural convection flows in a V-shaped cavity [8,13,14]. 

However, the study of natural convection flows in the V-

shaped cavity is of significance owing to their extensive 

presence in nature and industrial systems [14]. In particular, 

the transition to a chaotic flow in the cavity heated from below 

is still indistinct, which motivates this study. In the present 

study, the transitional flow in the V-shaped cavity is 

investigated using two dimensional numerical simulation. A 

sequence of bifurcations in the transition from steady to 

chaotic state is described. The transition involves a Pitchfork 

bifurcation from symmetric to asymmetric state, then a set of 

further bifurcations at asymmetric steady state, a Hopf 

bifurcation from steady to unsteady state, and a bifurcation 

from periodic to chaotic state. 

Model and numerical procedures 

In this study, natural convection in a V-shaped cavity is 

investigated using two dimensional numerical simulation. That 

is, the development of natural convection in the cavity is 

governed by the two-dimensional Navier-Stokes with the 

Boussinesq approximation and energy equations. The non-

dimensional format of governing equations can be expressed 

as [13]: 

 
(1) 

 
(2) 
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Here, the governing parameters are the Prandtl number (Pr), 

the Rayleigh number (Ra) and the aspect ratio (A), expressed 

as: 

 
 (5) 

 
Figure 1. Domain and boundary conditions with the monitoring points 

P1 (0.5, 0.5), P2 (-0.5, 0.5), P4 (0.5, 0.255), which are used in the 
subsequent figures.  

The physical model and boundary conditions are illustrated in 

figure 1. To compare the results with the experimental results 

in [8], we consider the similar dimensions of the cavity 

including the aspect ratio of A = 0.36. The miniscule tips were 

cut from the both top corners (4% of 1/A) to eliminate the 

singularity at the section part between the top and inclined 

walls. The studies [13,14] indicate that the slight modification 

has no influence on the fluid flow and heat transfer. The top 

and the bottom wall are cooled and heated, respectively, but 

the two tips of the cavity are considered to be adiabatic. No-

slip boundary condition is assigned to all boundaries. At the 

initial time, the fluid in the cavity is motionless and isothermal. 

In this study, a finite volume method was used to discretize 

the Navier-Stokes equations. We discretized the advection 

terms using the QUICK scheme [13]. The viscous terms were 

discretized using a second-order central difference, and the 

unsteady terms using a second-order implicit time-marching 

method. 

Grid dependence tests were carried out between different non-

uniform meshes with finer grids in the neighborhood of all 

borders and coarser grids in the internal region. The mesh of 

800×150 was used for all numerical cases in this study. In 

addition, the time step of  = 0.0025 is selected after time 

step dependence tests. 

Results 

For understanding of the transition to an unsteady flow in a V-

shaped cavity heated from the inclined wall and cooled from 

the top wall, two dimensional numerical simulation is carried 

out for Ra = 100 to 106, Pr = 7.0 and A = 0.5 in this study. 

Numerical results show that a set of bifurcations occurs in the 

transition from a conduction dominated symmetric steady flow 

for small Rayleigh numbers to an unsteady flow for large 

Rayleigh numbers. A typical symmetric steady flow for Ra  

1.3 × 104, an asymmetric steady flow for 1.4 × 104  Ra  1.6 

× 105, a periodic flow for 1.7 × 105  Ra  2.6 × 105 and a 

chaotic flow for Ra  2.7 × 105 are described in the following 

sections. 

Figure 2 shows isotherms and streamlines around Ra = 104. 

Figure 2(a) shows that the flow is symmetric for Ra = 104. 

However, the flow becomes asymmetric for Ra = 3 × 104, as 

illustrated in figures 2(b) and 2(c). Clearly, one of cells can 

become larger and move towards the left in figure 2(b) or to 

the right in figure 2(c), which depends on initial perturbations. 

This means that the symmetry of the flow structure is broken 

between Ra = 104 and 3 × 104. In fact, the transition from 

symmetric to asymmetric state is a supercritical Pitchfork 

bifurcation, which is a result of the onset of Rayleigh-Bénard 

instability, referred to e.g., [15] for details of bifurcation. In 

addition, apart from the symmetric break, the number of cells 

in the cavity increases with the Rayleigh number. For example, 

there are four cells for Ra = 104 in figure 2(a) but six cells for 

Ra = 3 × 104 in figures 2(b) and 2(c). This also implies that 

further bifurcations occurs with the increase of the Rayleigh 

number. 

 

 

 

Figure 2. Isotherms and streamlines in the cavity for different 

Rayleigh number. 
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Figure 3. Time series of the temperature at the points P1 and P2 in the 

fully developed stage for different Rayleigh numbers. 

For confirmation of the critical Rayleigh number for which a 

Pitchfork bifurcation occurs, figure 3 shows time series of the 

temperatures at the two points P1 (0.5, 0.5) and P2 (-0.5, 0.5), 

which are symmetric respect to the y-axis. Clearly, as time 

increases, temperature time series at the two points are the 

same for Ra = 1.3 × 104 (still the same at a larger time based 

on the further examination of numerical results) but become 

different for Ra = 1.4 × 104. This means that a transition from 

a symmetric to an asymmetric temperature distribution occurs 

between Ra = 1.3 × 104 and 1.4 × 104. In fact, the flow in the 



cavity is driven by only the baroclinity induced by the inclined 

wall for Ra  1.3 × 104 but by both the baroclinity and the 

Rayleigh-Bénard convection for Ra  1.4 × 104. This implies 

that the dynamics also changes in the pitchfork bifurcation 

around Ra = 1.4 × 104. 
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Figure 4. Time series of the temperature at the point P3 in the fully 

developed stage for different Rayleigh numbers. (a) Ra = 1.6 × 105. (b) 

Ra = 1.7 × 105. (c) Ra = 106. 

To further understand the unsteady flow for large Rayleigh 

numbers, temperature time series were monitored and 

analysed. Figure 4 shows temperature time series for different 

Rayleigh numbers. Clearly, the flow in the fully developed 

stage is steady for Ra = 1.6 × 105 in figure 4(a) but periodic 

for Ra = 1.7 × 105 in figure 4(b). This is a Hopf bifurcation 

from steady to periodic state. As the Rayleigh number 

increases, the flow can become chaotic in the fully developed 

stage, as shown in in figure 4(c). The spectral analysis was 

also performed for different Rayleigh numbers. The results 

show that the fundamental frequency of the periodic flow is 

0.28 with harmonic modes for Ra = 1.6 × 105. The 

examination of numerical results shows that the fundamental 

frequency varies for different Rayleigh numbers.  

Additionally, the largest Lyapunov exponent was calculated 

for different Rayleigh numbers (also see [16]). The study [16] 

indicates that the largest Lyapunov exponent (λL) is positive 

when a nonlinear system is chaotic. The transition from order 

to chaos can be characterized by the largest Lyapunov 

exponent. Figure 5 shows the largest Lyapunov exponent for 

different Rayleigh numbers. It is clear that the largest 

Lyapunov exponent is not positive for Ra  2.6 × 105. 

However, the largest Lyapunov exponent significantly 

increases for Ra  2.7 × 105 at which λL = 0.000629. This 

implies that the unsteady flow in the cavity becomes chaotic 

for Ra  2.7 × 105, which is consistent with that in figure 4. As 

the Rayleigh number increases further, the largest Lyapunov 

exponent continuously increases and thus the unsteady flow 

becomes more chaotic, as shown in figure 4. 
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Figure 5 Dependence of the largest Lyapunov exponent on the 

Rayleigh number. 

To understand heat transfer in the cavity, figure 6 shows the 

dependence of the Nusselt number on the Rayleigh number. It 

is seen from this figure that the scaling of Nu ~ Ra1/4 works for 

the present range of Rayleigh numbers, although Nu slightly 

decreases as the Rayleigh number increases. That is, the 

scaling of Nu ~ Ra1/4 can quantify heat transfer for the present 

Rayleigh numbers.  
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Figure 6 Dependence of the Nusselt number on the Rayleigh number. 

Conclusions 

In this study, two-dimensional numerical simulation is used to 

investigate natural convection flows in a V-shaped cavity 

heated from the inclined wall and cooled from the top wall. 

An extensive range of Rayleigh numbers from 100 to 106 is 

considered for Pr = 7.0 and A = 0.5. Different flow structures 

in the cavity are described. 

It is demonstrated that the transition of natural convection 

flows goes through a sequence of bifurcations from a 

symmetric steady state to an unsteady state. Natural 

convection flows in the cavity are steady and symmetric for 

Ra  1.3  104, which are also driven by the baroclinity 

generated by the thermal inclined wall through viscous shear. 

A Pitchfork bifurcation from symmetric to asymmetric state 

occurs for 1.3  104  Ra  1.4  104. As the Rayleigh number 

increases, a sequence of bifurcations occurs with the increase 

in the number of cells. A Hopf bifurcation from steady to 

periodic state occurs for 1.6  105  Ra  1.7  105. That is, 

natural convection flows in the cavity are periodic for Ra = 1.7 

 105 to 2.6  105 but chaotic for Ra  2.7  105. 

In addition, the 3D numerical simulation and the experiment 

corresponding to the current numerical simulation is on the 

way. 
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