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Abstract

Stochastic subgrid turbulence parameterisations are developed
for a baroclinic quasi-geostropic (QG) atmosphere with a Jan-
uary background state and realistic topography. The parameter-
isation coefficients are calculated from the statistics of higher
resolution reference direct numerical simulations (DNS). Sepa-
rate parameterisations are developed for each of the fundamen-
tal subgrid interactions. The first are the transient eddy-eddy in-
teractions, which are between subgrid and resolved eddies. The
second are the eddy-meanfield interactions between the subgrid
eddies and the resolved meanfield. The third are the meanfield-
meanfield interactions between the resolved meanfield and to-
pography and their unresolved counterparts. Finally the eddy-
topographic interactions are between the subgrid eddies and the
resolved topography. This parameterisation framework is val-
idated by producing large eddy simulations (LES) of the at-
mosphere that agree with the reference DNS. As compared to
the DNS of truncation wavenumber 63, successful LES are pro-
duced with a truncation wavenumber of 15, using only 1.3% of
the computational effort. This is particularly impressive as it
captures both the drain of energy out of the system due to the
forward enstrophy cascade, and the injection of energy associ-
ated with the unresolved baroclinic instability.

Introduction

There is the ever-growing need for larger ensemble sizes of cir-
culation models whether it be for data assimilation, ensemble
prediction, or parameter sensitivity studies. This significantly
increases the computational resources. There is, therefore, a
need to run lower resolution LES that represent the dynamics
captured in higher resolution models. In LES the large scales
are explicitly resolved on a computational grid, with the unre-
solved subgrid interactions parameterised. Subgrid parameter-
isations are typically developed by prescribing a physically in-
spired functional form, which is then implemented into a solver,
with its performance evaluated for various benchmark flows. In
the framework adopted herein, minimal assumptions are made
concerning the nature of subgrid turbulence with the param-
eterisation coefficients determined from the statistics of judi-
ciously truncated high resolution DNS. Physical interpretations
and possible simplifications, are made after the fact from the
properties of the coefficients. The only assumption made is that
the subgrid interactions are quasi-diagonal in scale space [2].

As in general, it is only possible to represent the statistical ef-
fects of the unresolved nonlinear subgrid interactions, statistical
dynamical closure theory is the natural formulation for devel-
oping subgrid parameterisations. Refer to [2] for an historical
account of the relevant closure research. Specifically the quasi-
diagonal direct interaction approximation (QDIA) closure ac-
counts for cross correlations between field variables, but has the
remarkable property that the operators and stochastic backscat-
ter variance are diagonal in spectral space [2, 3]. Within this
framework there are four classes of subgrid interactions: eddy-
eddy (E-E); eddy-meanfield (E-M); meanfield-meanfield (M-

M); and eddy-topographic (E-T). General expressions repre-
senting each of these subgrid interaction types were derived in
[2] for inhomogeneous turbulence. These expressions were cal-
culated for barotropic atmospheric flows in [9].

To broaden the applicability of the QDIA, a stochastic mod-
elling approach was developed in [5] that determines the E-E
subgrid coefficients from the statistics of a higher resolution
reference DNS. The DNS is truncated back to a coarser grid
and the parameterisation coefficients are then determined from
the subgrid statistics. This approach has produced lower res-
olution LES that reproduces the statistics of DNS, for atmo-
spheric, oceanic and three-dimensional wall bounded turbulent
flows [10, 11, 6, 7, 8]. In addition, for truncations made within a
self-similar inertial range, the subgrid coefficients are governed
by simple resolution dependent scaling laws [6, 7]. These scal-
ing laws enable the subgrid models to be utilised more widely
as they remove the need to generate associated coefficients from
a reference simulation.

In the current study we develop parameterisations of the key
subgrid interactions for simulations of a two-level QG atmo-
spheric flow, with a fully three-dimensional time averaged cli-
mate. We use the stochastic subgrid modelling approach of [5]
to calculate the E-E parameterisation coefficients, and a new re-
gression method to decompose the mean subgrid tendency into
the E-M, E-T, and M-M components. The method is validated
by comparing LES adopting these subgrid coefficients with the
DNS on the basis of kinetic energy spectra and mean zonal jets.

Benchmark direct numerical simulation

We employ the two-level quasi-geostrophic model of [1], non-
dimensionalised by using the radius of the earth (a = 6371km)
as a length scale, and the inverse of the earth’s angular velocity
(Ω= 7.292×10−5s-1) as a time scale. It is spectrally discretised
in the horizontal by expanding the field variables in spherical
harmonics with the zonal (longitudinal) wavenumber, m, and
the total wavenumber, n. This leads to the prognostic equations
for the reduced potential vorticity spectral coefficients, q j

mn =

ζ
j
mn+(−1) jFL(ψ

1
mn−ψ2

mn), where the superscript l on the flow
variables denotes the level, with j = 1 represents the upper level
at 250hPa, and j = 2 the lower level at 750hPa. ζ

j
mn =−n(n+

1)ψ j
mn are the spectral coefficients of the vorticity, and ψ

j
mn the

streamfunction coefficients. The layer coupling parameter, FL,
is inversely proportional to the temperature difference between
the two levels. The evolution equation for q j

mn is
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where the triangular truncated wavenumber set

T(T ) = [ p,q,r,s |−T ≤ p≤ T , |p| ≤ q≤ T ,
−T ≤ r ≤ T , |r| ≤ s≤ T ] , (2)
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Figure 1: Flow characterisation: (a) zonal velocity field at level 1 with contour levels from -16 ms-1 (white) to 56 ms-1 (black); (b)
zonal component of the time averaged zonal velocity at level 1 and 2; and (c) kinetic energy spectra (E1

n ) of the DNS decomposed into
contributions from the mean field (Ē1

n ) and fluctuating field (Ê1
n ) at level 1.

with T the DNS truncation wavenumber. Note, all results are
non-dimensional unless units are specified.

The present DNS has a truncation wavenumber of T = 63, cor-
responding to 192× 96 grid points (in latitude × longitude),
which is equivalent to a grid spacing in the mid-latitudes of ap-
proximately 100 km. Here FL = 2.5×10−6 km-2, which corre-
spond to a Rossby radius of deformation of rRos = 1/

√
2FL =

447 km, of associated wavenumber kRos = a/rRos = 14. Baro-
clinic instability is, therefore, explicitly resolved since T �
kRos. The interaction coefficients Kmpr

nqs are detailed in [5], and
the Kroncker delta term δ j2 in (1) ensures that the spectral to-
pography, hmn, enters into the equations only for the lower level.
The Rossby wave frequency is ωmn = −2m/(n(n+ 1)). The
drag at each level is only applied to the large scales n≤ 15 and
m ≤ 15, with damping times (1/α

j
n) of 20 days for level 1 and

5 days for level 2. The model is driven toward the mean Jan-
uary state, q̃ j

mn, for scales n≤ 32 and m≤ 32, with a relaxation
time (1/κn) of 11.6 days. The isotropic bare dissipation Dl

0(n)
is set according to the self-similar scaling laws outlined in [6],
such that the present benchmark DNS has statistics consistent
with like simulations of arbitrary high horizontal resolution. In
[6] the climate was only a function of the level and latitude.
However, in the present work the climate state is fully three-
dimensional.

The mean and fluctuating fields of this atmospheric flow are
now characterised. The mean jets are characterised by their
zonal velocity (ū j), and illustrated for level j = 1 in figure 1(a).
The easterly jets have similar strength in both hemispheres.
They also exhibit zonal asymmetries as a result of the target
fields and topography. The zonal component of the jets on both
levels are illustrated in figure 1(b), with the lower level jets
clearly weaker than the upper level ones. The contribution of
the meanfield and transients to each scale are illustrated by the
m-summed kinetic energy spectra. The January spectra at the
top level are illustrated in figure 1(c). The meanfield kinetic
energy (Ē1

n ) dominates for the large scales (small wavenum-
bers), and the transient kinetic energy (Ê1

n ) dominates at the
small scales (large wavenumbers). The two components have
equivalent magnitude at n ≈ 6. A constant enstrophy flux iner-
tial range starts at n ≈ 20, at which point the transients are two
orders of magnitude greater than the meanfield [6]. From n= 20
onwards, the kinetic energy spectra exhibits an n−3 decay, con-
sistent with a constant enstrophy flux [6]. The meanfield spectra
drops off far more quickly, and is closer to a n−6 dependence.
The lower level has similar properties, but has a lower magni-
tude across practically all scales.

Stochastic subgrid parameterisation framework

Here we present a framework for determining the subgrid co-
efficients from the statistics of the DNS. The first step is to de-
termine the subgrid tendency associated with a particular lower
resolution LES truncation wavenumber TR. The LES is con-
fined to the resolved scale wavenumber set R ≡ T(TR). The
subgrid wavenumber set is defined as S = T−R. To facilitate
the following discussion, we let q = (q1

mn,q
2
mn)

T for a given
wavenumber pair. In this vector notation the time derivative
of q can be decomposed such that qt(t) = qR

t (t)+qS
t (t). The

resolved tendency (qR
t ) involves only triadic interactions be-

tween wavenumbers less than or equal to TR, whilst the sub-
grid tendency (qS

t ) has at least one wavenumber greater than
TR involved in the triadic interactions. The subgrid tendency
is further decomposed as qS

t (t) = f+ q̂S
t (t) where f is its time

average representing the sum of the E-M, M-M, and E-T inter-
actions, and q̂S

t is its fluctuating component representative of
the E-E interactions.

We adopt the approach of [5] to parameterise q̂S
t through

q̂S
t (t) =−Dd q̂(t)+ f̂(t) , (3)

where Dd is the subgrid drain dissipation matrix, q̂ is the fluc-
tuating component of q, and f̂ is a random forcing vector. As
the present simulations have two vertical levels, Dd is a 2× 2
matrix, and f̂ is a 2 element column vector. We determine Dd
by post-multiplying both sides of (3) by q̂†(t0), integrating over
the turbulent decorrelation period τ, and ensemble averaging, to
yield

Dd =−
〈∫ t

t0
q̂S

t (σ)q̂
†(t0)dσ

〉 〈∫ t

t0
q̂(σ)q̂†(t0)dσ

〉−1
, (4)

where † denotes the Hermitian conjugate for vectors and matri-
ces. The angled brackets denote ensemble averaging, with each
ensemble member determined by shifting the initial time t0 and
the final time t = t0+τ forward by one time step. The turbulence
decorrelation time, τ = 192 days, which is sufficiently large to
capture the memory effects of the subgrid turbulence [6]. The
model for f̂ is determined by calculating the non-linear noise co-
variance matrix Fb = Fb+Fb

†, where Fb = 〈f̂(t) q̂†(t)〉. Again
post-multiplying both sides of (3) by q̂†(t), and adding the con-
jugate transpose of (3) pre-multiplied by q̂(t) yields〈

q̂S
t (t)q̂

†(t)
〉

+
〈

q̂(t)q̂S†
t (t)

〉
=

−Dd

〈
q̂(t)q̂†(t)

〉
−

〈
q̂(t)q̂†(t)

〉
Dd

† +Fb , (5)
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Figure 2: Subgrid coefficients: (a) eddy-eddy net dissipation D22
net(m,n); (b) eddy-meanfield dissipation D̄22

mn; and (c) eddy-topographic
term χ2

mn; and (d) meanfield jacobian J2
mn.

which can be rearranged for Fb. An eigenvalue decomposi-
tion of Fb is used to produce a stochastic representation for
f̂ [10]. The backscatter dissipation is then given by Db =

−Fb
〈
q̂(t) q̂†(t)

〉−1. One can also represent the subgrid inter-
actions in a simplified deterministic form q̂S

t (t) = −Dnet q̂(t)
where Dnet is given by the sum of the drain and backscatter,
representing the net effect.

The subgrid E-M, M-M and E-T interactions, all contribute to
the mean subgrid tendency. A new least squares approach is de-
veloped to decompose their contributions, which makes use of
the functional forms of the above subgrid terms outlined in the
QDIA closure [3]. It captures the relationship that the ensem-
ble averaged subgrid tendency f̄ has with the ensemble averaged
field q̄, and the topography hmn. For a given wavenumber pair

f̄ =−Dq̄+χhmn +J , (6)

where D is a 2× 2 dissipation matrix representing the E-M in-
teractions, the E-T term χ is a 2 element column vector, and the
meanfield Jacobian J is a time invariant 2 element vector given
by

J j
mn = ∑

(p,q,r,s)∈S
iKmpr

nqs

(
〈ψ̄ j
−pq〉〈q̄

j
−rs〉+ 〈ψ̄

j
−pq〉h−rsδ

j2
)

. (7)

The matrix D̄ is then solved for in a least squares sense,

D̄ =−
(
〈(f̄i−Ji)q̄†

i 〉− (f̄−J)q̄†
) (
〈q̄iq̄†

i 〉− q̄q̄†
)−1

, (8)

where q̄i and f̄i are time averaged over the i-th non-overlapping
time window of length τM , and Ji is calculated from qi. By
definition the ensemble averages 〈qi〉 ≡ q̄, and 〈f̄i〉 ≡ f̄. The
topography h and E-T coefficient χ are both independent of time
and hence ensemble member. We use τM = 32 days, since the
magnitude of the subgrid coefficients at the truncation scale are
practically independent of τM for longer periods. The E-T term
is then determined by rearranging (6) such that

χ =
[
f̄+Dq̄−J

]
/hmn . (9)

Subgrid coefficients

As discussed above the deterministic variant of the E-E interac-
tions are parameterised via a net dissipation matrix Dnet acting
upon the fluctuating field. At the truncation level of TR = 15
baroclinic instability (of central wavenumber k = 14) is not ex-
plicitly resolved, and the associated energy injection into the

system must be parameterised. The real component of the upper
diagonal element of Dnet is illustrated in figure 2(a). The dissi-
pation increases strongly with n indicating that the E-E subgrid
interactions become stronger as the resolved scales approach
the truncation wavenumber. The positive dissipations for large
n indicate energy being deterministically transferred from the
resolved to the subgrid, whilst negative values for small n indi-
cate an energy being transferred from the subgrid to the resolved
scales.

The mean subgrid tendency (f̄) is decomposed into the: E-M
(−D̄q̄); E-T (χhmn); and M-M (J) components. The real com-
ponents of D̄22

mn, χ2
mn and J2

mn, are respectively illustrated in fig-
ure 2(b), 2(c) and 2(d). The upper diagonal E-M dissipation
(D̄22

mn), is either zero or negative through most of the wavenum-
ber plane, with positive values in the region approaching the
truncation scale. This indicates that the large scale mean climate
state needs to be energised due to the unresolved baroclinic in-
stability. The magnitudes of the other coefficients also increase
with n, however, they also change sign often in both the n and m
directions. The above observations are also true for level j = 1.

Large eddy simulation

The relative impact of each of the subgrid interactions upon the
kinetic energy spectra is illustrated in figure 3(a). As a baseline
the first test is the no subgrid parameterisation case (qS

t = 0).
This obviously produces ridiculous results with a build up of
energy in the smallest resolved scales. It also clearly illustrates
a decrease in energy at the large scales, as a result of the “tail
wagging the dog” effect of [4]. This is due to the dynamical
system attempting to globally conserve energy to counter the
build up of energy at the small scales.

Each of the following tests all adopt the determinisitic E-E
parameterisation, where for a given (m,n) wavenumber pair
the fluctuating subgrid tendency is parameterised according to
−Dnetq̂. The second test is the no subgrid meanfield ten-
dency (f̄ = 0). As can be seen the addition of the E-E model
has largely corrected the spectra. The following tests progres-
sively include the E-M component (f̄ = −D̄q̄); the E-T com-
ponents (f̄ = −D̄q̄+χhmn); and finally the meanfield Jacobian
(f̄ =−D̄q̄+χhmn +J). As one would expect, the bottom spec-
tra incorporating all of the subgrid interactions yields the best
agreement. Each of these LES variants are also compared on
the basis of the zonal component of the mean zonal velocity at
level 1 in figure 3(b). By this measure the E-E parameterisa-
tion is again responsible for the greatest improvement, but the
best agreement is achieved when all interactions are parame-
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Figure 3: LES validation. (a) Comparison of the level 1 kinetic energy spectra between the DNS (dashed line) to LES variants
(solid line) with no subgrid parameterisation (qS

t = 0), only the deterministic E-E parameterisation (f̄ = 0), plus the E-M component
(f̄ =−D̄q̄), plus the E-T component (f̄ =−D̄q̄+χhmn), and finally the complete subgrid parameterisation (f̄ =−D̄q̄+χhmn +J). The
top spectra is at the true energy level with the others offset for clarity. (b) Comparison of the above variants on the basis of the zonal
component of ū1.

terised. Note, equally impressive agreement is achieved using
the stochastic E-E parameterisation.

Concluding remarks

We have presented a framework for how one can parameterise
each of the dominant subgrid interactions, from the statistics of
a benchmark DNS. The E-E interactions are between subgrid
eddies and resolved eddies, and are the dominant class. In the
present LES they are parameterised via a scale dependent dis-
sipation acting on the resolved transient field. The E-M inter-
actions are between the subgrid eddies and the resolved mean-
field, and are parameterised as being linearly proportional to
the resolved meanfield. The E-T interactions are those between
the subgrid eddies and the resolved topography and is linearly
proportional to the latter. The M-M interactions are those be-
tween the resolved meanfield and resolved topography, and the
subgrid meanfield and subgrid topography. Successful LES are
presented for a truncation in which baroclinic instability is not
fully resolved (TR = 15) using 1.3% of the computational effort
used in the DNS. Whilst the E-E interactions are dominant, the
best agreement between the LES and DNS is achieved when all
of the subgrid interactions are parametrised. Our subgrid pa-
rameterisation are hence able to produce lower resolution sim-
ulations that reproduce the statistics of a higher resolution ref-
erence case across all scales. The framework outlined herein is
not specific to the atmosphere, nor canonical fluid dynamics. In
fact it is a general means of parametrising unresolved processes
in nonlinear multi-scale inhomogeneous dynamical systems.
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