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Abstract

Realisability conditions based on the Cauchy-Schwarz inequal-
ity are developed for the moments of the longitudinal velocity
structure function, (δu(r))n (δu(r) = u(x, t)− u(x,+r, t)), for
homogeneous isotropic turbulence in the inertial range, when
they are assumed to follow a power-law form (∼ rζn ). While
these conditions cannot be used to assess the validity of any
phenomenology behind the development of scaling laws in the
form (δu)n ∼ rζn , they provide a simple and objective way to
assess the realisability of the exponent ζn. In particular, they
can also be used to assess the realisability of ζn obtained empir-
ically from either experimental or numerical data. Application
of these realisability conditions to existing data shows that the
estimated exponents ζn as well as multifractal model expres-
sions of ζn are not realisable. Interestingly, the β-model and
the Kolmogorov prediction (i.e. ζn = n/3) are both realisable,
but only the latter is Reynolds number independent. This is ex-
pected since it is valid when the Reynolds number is infinitely
large.

Introduction

Kolmogorov’s second similarity hypothesis [1] leads to the fol-
lowing similarity law (hereafter denoted K41)

(δu)n =Cn(εr)n/3 (1)

where (δu = u(x+ r, t)−u(x, t)) is the velocity increment, r the
space increment, and Cn are universal constants independent of
the Reynolds number and the turbulent flow configuration (the
overbar denotes ensemble averaging). The range over which
this law applies is called the inertial range and is defined as
η� r � L, where η and L are the Kolmogorov length scale
and integral length scale, and they are representative of the dis-
sipative and energy containing large scales, respectively). How-
ever, almost 20 years later [2], acting on a remark made by Lan-
dau, he proposed the so-called refinement similarity hypothe-
ses (hereafter denoted K62), which predicts that, in the inertial
range, (δu)n behaves as follows:

(δu)n ∼ rζn , (2)

where ζn 6= n/3, except for n = 3. It should be pointed out
that, independently of [2], Oboukhov [3] proposed a correction
to (δu)2 ∼ r2/3; in fact, K62 uses some elements of [3]. The
lack of agreement between the experimental data and the
prediction of K41, thought to vindicate Landau’s remark and
K62, and commonly attributed to the phenomenon of internal
intermittency [4, 5], motivated the search for correcting or
altering (1). Interestingly, while K41 predicts (δu)3 ∼ r, K62
simply uses it. This is because Kolmogorov assumed that
(δu)3 ∼ (4/5)εr is valid for K62. This points to a critical re-
quirement for both theories, namely that the Reynolds number

must be infinitely large (as seen later). This immediately raises
a concern regarding the comparison between the experimental
and numerical simulation data invariably obtained at finite
Reynolds numbers and the predictions of both K41 and K62
for an infinitely large Reynolds number.
As mentioned above, the common feature of K41 and K62 is
the four-fifths law (i.e. (δu)3 = (4/5)εr), which is a rigorous
result derived from the transport equation of (δu)2 when the
Reynolds number is infinitely large [6]. Considering that
this law is indisputable from a theoretical point of view, it is
not surprising that it played a critical role in the turbulence
theory, in particular in the assessment on both K41 and
K62. Indeed, any theory of HIT at infinitely large Reynolds
number must be consistent with this law. Unfortunately, the
impossibility to reach an infinitely large Reynolds number
makes it impossible to test through measurements or numerical
simulations whether any proposed theory of HIT complies
with this law. Nevertheless, despite this drawback, attempts
were carried out, mostly from phenomenological arguments
[4], to develop expressions for (δu)n. Without exception, all
past and current expressions are of the form (2), which reflects
the so-called anomalous behaviour of (δu)n believed to be
caused by the small-scale intermittency and which leads to
ζn deviating from n/3 except for n = 3; ζ3 = 1 is imposed in
order to recover the four-fifths law. Unfortunately, since the
compliance with this law ((δu)3 ∼ r) by (2) cannot be tested at
finite Reynolds numbers since the four-fifths law is not tenable
at such Reynolds numbers, one cannot rule out the possibility
that the proposed models (or more precisely the power-law
exponents) may not be realisable in the sense that they may
violate some kinematic and kinetic constraints.
In the present paper we develop realisability conditions for
testing models of (δu)n, which yield (δu)n ∼ rζn in the inertial
range. We first consider an infinitely large Reynolds number
which allows us to develop realisability conditions for the
exponent ζn.

Realisability contitions

Infinite Reynolds number

If one assumes that (δu)n ∼ rζn for any positive real n and the
4/5 law is verified, one can then easily derive the relationship
between the exponents ζn. For example we can relate the expo-
nents ζn to ζ2 for n≥ 3. Indeed, writing (δu)3 = (δu)2(δu) and
applying the Cauchy-Schwarz theorem, we have

|(δu)3|= |(δu)2(δu)| ≤ (δu)41/2
(δu)21/2

. (3)

Thus, assuming (δu)n ∼ rζn where ζn varies with n, one must
have, by virtue of the 4/5 law (i.e. ζ3 = 1)

r ≤ rζ4/2rζ2/2 (4)



or, equivalently,
ζ4 ≥ 2−ζ2. (5)

Also, for example, ζ5, ζ6, ζ7 and ζ8 can be obtained in a sim-
ilar manner. Let us write (δu)4 = (δu)3(δu) and applying the
Cauchy-Schwarz theorem, we find ζ4 ≤ (ζ6 + ζ2)/2, and thus
we have ζ6 ≥ 4− 3ζ2. writing (δu)5 = (δu)3(δu)2 we get
ζ5 ≤ (ζ6 + ζ4)/2. However, (ζ6 + ζ4) ≥ (3− 2ζ2). Thus, one
can have ζ5 ≤ 3− 2ζ2 or ζ5 ≥ 3− 2ζ2, while the constraint
ζ5 ≤ (ζ6 + ζ4)/2 must be satisfied. Further, writing (δu)5 =

(δu)4(δu) and (δu)7 = (δu)3(δu)4, leads to ζ7 ≤ 5− 4ζ2 or
ζ7 ≥ 5−4ζ2 and ζ8 ≥ 6−5ζ2. Finally, we obtain

ζn ≤ or ≥ (n−2)− (n−3)ζ2, when n = 2p+1 (6)

ζn ≥ (n−2)− (n−3)ζ2, when n = 2p (7)

where p is an integer. These expressions can be interpreted as
the realisability conditions for the exponents ζn of the power-
law form (2). Note that at this stage there is nothing to suggest
or help us determine the value of ζ2. If we follow the general
practice and assume that ζ2 departs slightly from the value 2/3,
we can, to a first approximation, write ζ2 = 2/3 + ξ, with ξ

small and real. Then (6) and (7) become

ζn ≤ or ≥ n
3
− (n−3)ξ, when n = 2p+1 (8)

ζn ≥
n
3
− (n−3)ξ, when n = 2p (9)

Recall that ζn must increase monotonically with n. Thus, we
must have, for example,

2−ζ2 < 3−2ζ2 < 4−3ζ2. (10)

since ζ4 < ζ5 < ζ6. It is important to remember that these
relations are valid if and only if the 4/5 law is satisfied and
(δu)n ∼ rζn . Using Hölder’s inequality, [4] proposed a convex-
ity inequality for the even exponents (see his expression (8.11))
to explain the trend exhibited by experimental data of [7]. Note-
worthily, the Cauchy-Schwarz inequality is a special case of
Hölder’s inequality.

Interestingly, replacing the inequality sign by the equality sign
in the above expressions (this is a valid possibility compliant
with the Cauchy-Schwarz inequality) yields a more stringent
realisability condition

ζn =
n
3
− (n−3)ξ, (11)

which can be interpreted as a limiting realisability condition for
the exponent ζn. Notice a resemblance to several relations for
ζn, derived from phenomenological arguments of small-scale
intermittency, in particular with the β-model. This model yields

ζn =
n
3
+(3−D)(1− n

3
), (12)

where D is a (fractal) dimension. When n = 2,
ζ2 = 2

3 + (3 − D)/3 = 2
3 + ξ. Thus, (11) is identical to

(12) if ξ = 1−D/3. The β-model, like (11), predicts a linear
variation of ζn with n and has been abandoned as it does
not agree with experimental results for large values of n and
replaced by more sophisticated models, such as multifractal
models (e.g. [4, 5]), developed to achieve better agreement
between model predictions and experimental data. Despite their
differences, all small-scale intermittency models (non fractal,
fractal and multifractal) must adhere to ζ3 = 1 since they must
reproduce the 4/5 law. This indicates that these models also

assume, at least implicitly, an infinitely large Reynolds number,
which raises an obvious concern. This is discussed in the below.

Finite Reynolds number

The realisability conditions (8) and (9) hold, in principle, for
an infinitely large Reynolds number, which is an essential re-
quirement for the 4/5 law but also for both (1) and (2). When
the Reynolds number is finite, the 4/5 law is not strictly valid.
This is illustrated in Figure 1 which shows distributions of
−(δu)3/(εr) in terms of r/η in forced turbulence in a periodic
box at Reλ = 732 and 1131 (the data have been extracted from
Figure 3b of [8]); also included in the figure are the experimen-
tal data of [7] which will be commented on later in this section.
Although 0.8 is relatively well approached by the maximum of
-(δu)3/(εr) for the largest Reλ, there is no convincing plateau,
indicating that the 4/5 law is not yet satisfied and implying the
absence of an inertial range. The consequence of the absence of
a plateau is evident: ζ3 cannot be equal to 1.

While, as stated above, a power-law form as expressed as (1)
or (2) cannot be tenable at finite Reynolds numbers, it was
nevertheless tested in finite Reynolds number turbulent flows
(e.g.[7, 9, 10]). It is in this context then pertinent to assess its
realisability when the Reynolds number is finite. Staring with
(δu)3, if for a large but finite Reynolds number the departure
from the 4/5 law is assumed to be small, one can then, under
a linearisation approximation, write ζ3 = ζ3,exact + χ3, where
ζ3,exact should be 1 by virtue of the 4/5 law and χ3 is a small
real number. Let us further assume that (δu)n ∼ rζn can also
be approximately verified for all n (strictly not valid; at least, it
remains to be proven). Then, applying the same procedure as
above involving the Cauchy-Schwarz inequality, we obtain the
new realisability conditions

ζn ≤ or ≥ (n−2)(1−χ3)−(n−3)ζ2, when n = 2p+1 (13)

ζn ≥ (n−2)(1−χ3)− (n−3)ζ2, when n = 2p, (14)

or the more stringent one

ζn = (n−2)(1−χ3)− (n−3)ζ2. (15)

As Reλ → ∞, one must recover the 4/5 law, then ζ3 → 1, and
consequently χ3 = f3(Reλ)→ 0, which implies ζn = fn(Reλ).
At this stage, ζ2 remains an unknown; it may or may not depend
on Reλ. If it depends on Reλ, it must approach a limiting value,
say ζ2,exact , as Reλ → ∞. If ζ2,exact = 2/3 at infinitely large
Reλ, then (15) indicates that (δu)n ∼ rn/3, i.e. the K41 predic-
tion, is realisable when Reλ → ∞. The Reλ-dependence of ζn
has been extensively discussed in [13] who show a clear Reλ-
dependence on ζn in various flows if one assumes that (2) holds
at finite Reynolds numbers. We report in Figure 2 the values of
ζn, based on (15), for finite Reλ; for ζ2, we used the experimen-
tal results of [7], also reported in the figure, where ζ2 = 0.71; al-
though these data are relatively old, they played a pivotal role in
the development and testing of the current intermittency models
of (δu)n, which is why we reproduce them here; also since all
studies carried out after this seminal paper reproduce the same
trend as seen in the figure, we only reproduce a few results ob-
tained via DNS of forced HIT [9, 10]. To plot (15), we have
arbitrarily used the asymptotic limit ζ3 = 1 only for the purpose
of illustration; changing ζ3 changes only the ”anchor point” or
the point around which the family of curves calculated with (15)
for different ζ2 would rotate. Note that the experimental values
of ζn for n ≥ 10 may be questionable; we show them only be-
cause they were included in the data reported in [7]. According
to the present analysis, ζn for n = 2p should lie on or above
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Figure 1: Distributions of −(δu)3/(εr) versus r/η. Forced turbulence in a periodic box [8] at Reλ = 732 (red squares) and 1131 (blue
circles). Experimental data of [7]; open squares: Reλ = 515; +: Reλ = 536; *: Reλ = 852.

the values calculated with (15) while ζn with n = 2p+1 could
lie on, above or below the values calculated with (15), with the
constraint that ζn < ζn+1; a lack of compliance with this rep-
resents a violation of the realisability conditions. Clearly, the
data (for the even exponents with n≥ 4) reported by [7] violate
this latter condition. A similar conclusion can be drawn for the
DNS data of forced HIT.
The value of ζ3 reported in [7] warrants a comment as it con-
flicts with a lack of a plateau in their data shown Figure 1. [7]
states that the 4/5 law is free of any intermittency assumption.
While this is a correct statement, which might have misled the
authors in assuming that the deviation of a plateau was due to
measurement uncertainties, it unfortunately ignores the finite
Reynolds number effects, which, to be fair to the authors, was
not known at that time. Figure 1 conclusively provides evidence
that ζ3 cannot be equal to 1 in the data reported in [7]; this
should not be surprising since as, we have seen, ζ3 = 1 requires
an infinitely large Reynolds number and is not strictly observed
in the more reliable DNS data of [8] at larger Reλ than those
attained in [7]. Further, the data for Reλ = 536 and 852 exhibit
an unrealistic behaviour, i.e. −(δu)3/(εr) exceeds the limiting
value of 0.8 over a non negligible range of r; [11] attributed this
unrealistic behaviour of −(δu)3/(εr) to an underestimation of
ε. A possible alternative reason for this behaviour relates to the
fact that [7] used turbulent shear flows (e.g. jet and pipe flows)
which are not only subjected to the finite Reynolds number ef-
fects, but also to large scale anisotropy. Thus, caution should be
exercised regarding these measurements and their use for test-
ing K41 and K62 is rather dubious. This caution can in fact
be generalised to all finite Reynolds number measurements and
numerical simulations.
Figure 2 also shows the β-model, one of the earlier intermit-
tency models. We have used D = 2.8, the value generally ac-
cepted [4]. If we use D = 2.87 (= 3−3ξ, so that (12) is identi-
cal to (11)) corresponding to ζ2 = 0.71, the β-model collapses
perfectly well with (15), as expected. Not surprisingly, taking
D = 3, which implies ξ = 0, one recovers K41. Note that any
linear model (in n) satisfies the realisability condition (15).
Multifractal models were developed with the objective to im-
prove agreement with the empirically estimated values of ζn

of [7] or at least to reproduce the curvature exhibited in Fig-
ure 2 that the β-model fails to capture (e.g. [14]). However,
notwithstanding that no power law of r for (δu)n can be strictly
observed for finite Reynolds numbers, since the exponents ζn
for the multifractal models follow the concavity exhibited by
the experimental data, one can only conclude that they violate
the realisability conditions. Oddly enough, the realisability for
the odd exponents may appear to be verified by the experimen-
tal data. However, this is only fortuitous. Indeed, consider
for example ζ9. Since ζn should conform with a nondecreas-
ing trend with increasing n, ζ9 must be larger than ζ8, whose
value must be larger than or equal to that calculated with (15).
The experimental data present a concavity which cannot satisfy
simultaneously the realisability conditions and the nondecreas-
ing requirement.

Conclusions

Small-scale intermittency, which has been a subject of active
research for about 60 years, is believed to be responsible for
the anomalous scaling of the moments of the velocity incre-
ments. Models have been proposed, using phenomenological
arguments, to account for this anomaly. It is therefore im-
portant to ensure that these models are realisable so that their
predictions comply with the equations of motion and do not
lead to incorrect/impossible results. The realisability conditions
proposed here provide a simple, reliable and objective means
for testing the viability of past and future models (based on a
power-law form (2)) in predicting the behaviour of the structure
functions of any order when the Reynolds number is infinitely
large. In that respect, they play a similar role to the realizabil-
ity conditions for the Reynolds-stress turbulence models [12].
Importantly, they can also be used to assess the realisability of
the power-law exponents ζn obtained empirically from either
experimental or numerical data. For example, they show that ζn
estimated by [7] are not realisable. Consequently, all power-law
models which reproduce the experimental results of [7] cannot
be realisable. Note however that these realisability conditions
cannot be used to assess the validity of any phenomenology be-
hind the development of scaling laws in the form (δu)n ∼ rζn .
It is important to stress that the realisability conditions proposed
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Figure 2: Variation of ζn as a function of order n. Solid line: ζn = n/3, according to K41; thick dashed line: equation (15) with
ξ = 0 (or equivalently ζ3 = 1) and ζ2 = 0.71; blue diamonds: β-model with D = 2.8. Experimental data of [7], square: Reλ = 515; +:
Reλ = 536; *: Reλ = 852. DNS data: [10], cyan bullets: Reλ = 250 (this was a maximum value); [9], red stars: Reλ = 460.

here are only valid when (δu)n is expressed in a power-law form
(2). At finite Reynolds numbers, one cannot have (δu)3 ∼ r,
which automatically rules out any model that predicts this rela-
tion when the Reynolds number is finite; this includes not only
intermittency models, but also non-intermittency ones such as
power-law models based on K41, e.g., relation (1). Accord-
ingly, one cannot use (2) to assess the effects of finite Reynolds
number on (δu)n. One must be rather careful when attempting
to fit power-law models for (δu)n to experimental and numer-
ical simulation data. Caution should be exercised: if a power-
law model is used, even as an empirically approximate model,
to express (δu)n, then not only should the (empirical) power-
law exponents comply with the realisability conditions, but, as
shown in the present analysis and [13], they must vary with the
Reynolds number; importantly too, the exponent ζ3 cannot be
assumed to be equal to 1. Interestingly, only K41, with ζ3 = 1,
can satisfy realisability as well as independence on Reλ.
Finally, the impossibility to carry out experiments and simula-
tions at an infinite Reynolds number raises a major concern with
regard to the so-called the anomalous behaviour (i.e. ζn 6= n/3
when n is not 3 in (2)), which has been apparently confirmed by
experimental and numerical results. However, as seen above,
(δu)n ∼ rζn is not tenable when the Reynolds number is finite.
What is perhaps anomalous is to find ζ3 = 1 when the Reynolds
number is finite.
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