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Abstract 

The transition of a buoyant plume from an open cavity heated 

from below is studied by using numerical simulation. A small 

range of Rayleigh numbers from 104 to 105 and aspect ratio of 

A = 1/2, and Prandtl number of Pr = 0.7 (air) is considered. The 

plume from an open cavity heated below approaches a periodic 

puffing state around the Rayleigh number 8.6×104, it suggests 

that the plume from the open cavity heated below undergoes a 

supercritical Hopf bifurcation from a steady flow to a periodic 

flow. The following results reveal that there exists a series of 

period-doubling bifurcations after the Rayleigh number 

exceeds 8.6×104. Moreover, the phase pictures are displayed to 

understand the period-doubling bifurcations further. The 

understanding of the transition of buoyant plumes from a three-

dimensional open cavity is of practical importance for the 

design of various systems such as smoke exhausts. 

Nomenclature： 

A      aspect ratio, H/D 

B      bottom of the computational domain 

D      diameter of the open cavity 

g     acceleration due to gravity 

H    height of the open cavity 

k     thermal conductivity 

Pr     Prandtl number, / 

Ra    Rayleigh number, gβTD3/ 

t      time  

t0      initial time 

t     time step 

T      temperature 

Th     temperature of the heated bottom 

T0     initial temperature of the ambient fluid 

u      x-velocity 

v      y-velocity 

w      z-velocity 

x, y, z   nondimensional coordinate  

β      coefficient of thermal expansion  

      thermal diffusivity  

      kinematic viscosity  

      density 

Introduction  

Natural convection is widely found in nature and industry 

[1-4]. Natural convection may rise from volcanoes, building 

ventilation, chimney, which is also referred to as plume. A 

plume is a fluid motion which is driven purely by continuous 

buoyancy sources. As a common type of natural convection, 

plumes are rapidly gaining attention in the research area due to 

their fundamental significance in a myriad of industrial and 

environmental flows [5-7].  

Plumes could be laminar, transitional or turbulent. 

Laminar plumes exhibit a straight column in which the 

distribution of the temperature and the velocity is characterized 

in [8,9]. As for the transitional plume, the successively periodic 

vortical structures of transitional plumes on a heated plate were 

visualized in [10,11]. It was found that the onset of the 

transition of plumes occurs when the fluctuation appears 

downstream [12,13]. According to [14], the transition from a 

laminar to a turbulent plume passes through a sequence of 

bifurcations in a spatial temporal system. Apart from laminar 

and transitional plumes, turbulent plumes rising from a heat 

source were investigated [15-19]. Clearly, the classic plume 

theory solutions provide a reliable option to describe complex 

turbulent plumes [13,14]. Many studies (see e.g., [19]) have 

focused on entrainment of turbulent plumes. It was found that 

direct numerical simulation (DNS) is an appropriate method to 

characterize fine structures of entrainment and three-

dimensional vortices of turbulent plumes. Entrainment is time-

dependent in nature. This includes the contraction and 

expulsion phases in the ascent of turbulent plumes, which were 

captured using particle imaging velocimetry (PIV) technique 

[15].  

The shape of the heat source plays a significant role in 

influencing the flow dynamics of plumes [20-22]. Experimental 

visualization showed that the heated fluid flows to the center of 

a heated plate and then ascends resulting in a plume [23]. The 

shape of the heated plate plays a role in the local heat transfer 

[20]. The dependence on governing parameters, such as the 

Rayleigh number, of the heat transfer of plumes rising from 

shape-different heated plates was quantified [22,23]. 

Furthermore, the heat transfer of laminar plumes on a heated 

plate with different extensions and restrictions was investigated 

[24-26]. 

The existing literature is almost devoid of studies 

pertaining to transitional plumes on a heat source of a non-ideal 

shape (except for a point, a line or a plane). In this study, we 

consider a plume arising from an open cavity heated from 

below, which serves as the basis for the understanding of the 

transition of natural convection flows and is of practical 

importance for the design of various systems such as smoke 

exhausts. A sequence of period-doubling bifurcations in the 

transition from a steady flow to an unsteady plume, with the 

increase of the Rayleigh number, is characterized.  

Numerical procedure 

The studies in [27-29] show that numerical simulation is 

capable of describing the transition of natural convection flows 

in a cavity. The three dimensional computational domain of 5

×5×10 is considered, as shown in Fig. 1. The open cavity of 

height H and diameter D is heated from below, and the bottom 

is maintained at a temperature of Th. The sidewalls of the open 

cavity are assumed as adiabatic. At t = 0, the working fluid (air) 

is quiescent and the temperature is T0. Natural convection flows 

inside and outside the open cavity are governed by the non-

dimensional Navier-Stokes and temperature equations with the 

Boussinesq approximation as follows, 
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Figure 1. Sketch of the computational domain. 

where u, v and w are the velocity components in the x, y and z 

directions respectively, t is time, T is the temperature, p is the 

pressure. The quantities are normalized using the following 

scales: x, y, z ∼ H; t ∼ D2/( κRa 1/2 ); ( T – T0 ) ∼ ( Th – T0); u, 

v, w ∼ (κRa1/2)/D ; and -1p/x, -1p/y, -1p/z  2Ra/D3. 

The dimensionless parameters in the governing equations and 

boundary conditions are the Rayleigh number, Ra = gβ(Th − T0) 

D3/ vκ, the Prandtl number, Pr = v/κ, and the aspect ratio, A = 

H/D, in which g, H, D, T0, Th, β, v and κ are acceleration due to 

gravity, the height and diameter of the open cavity, the initial 

temperature of the ambient fluid, the temperature of the heated 

bottom, coefficient of thermal expansion, viscosity, and thermal 

diffusivity, respectively. 

A finite volume SIMPLE algorithm is used to implicitly 

solve the governing equations. A QUICK scheme is employed 

to discretize the advection term, and a second-order difference 

method is applied for the time integration (see [30] for details). 

Mesh and the time step test 

Time 

step 
Mesh 

Variation of temperature 

at point (0, 0, -4.5) 

0.042 5200 × 115 - 

0.021 5200 × 115 1.0% 

0.042 7400 × 160 1.1% 

Table 1. Dependence test of the mesh and the time step. 

The mesh is non-uniform in this study. That is, care is 

taken in sensitive areas where the element density increases 

because velocity and temperature gradients are more profound 

in these areas namely, near the bottom and sidewalls of the open 

cavity. The two meshes (B × H) of 5200 × 115 and 7400 × 160 

and the two time steps of 0.01 and 0.02 were tested pertaining 

to the maximum Rayleigh number (Ra = 106). To quantify the 

effect of the mesh and time step on the plume from the open 

cavity, the difference between the average values of the 

temperatures at the fully developed state from t = 5000 to 9000 

based on the two grids 5200 × 115 and 7400 × 160 is 1.1%, as 

shown in Table 1. Accordingly, to ease computational burden 

and time, the mesh of 5200 × 115 is adopted. Additionally, a 

time-step dependence analysis is conducted by using the 

dimensionless time-steps of 0.042 and 0.021. The difference of 

the average temperatures in the fully developed stage calculated 

using different time steps is 1.1%. This means that either of the 

two time-steps can be used. Considering the computing cost, 

the time-step of 0.042 is adopted (in which the Courant number 

is smaller than 0.5).  

Results and discussion 

The examination of results shows that the plume from the 

open cavity is steady with the increase of the Rayleigh number 

until Ra = 8.5 ×104. However, the plume becomes unsteady for 

Ra = 8.6 ×104, which is periodic puffing. That is, the transition 

from a steady to a periodic state occurs between Ra = 8.5 ×104 

and 8.6 ×104, which is a Hopf bifurcation in which the 

oscillatory solution bifurcates from the steady solution as the 

Rayleigh number increases through a critical value. 

     

    (a)   (b)   (c)    (d)   (e) 

Figure 2. Isotherm (T = 0.25) for Ra = 9.4 × 104 at (a) t = t0, (b) t = t0 + 

4, (c) t = t0 + 12, (d) t = t0 + 18.2 and (e) t = t0 + 24.6. 

 

 

 

 

 

Figure 3. Time series of the x-velocity at the point (0, -4.75) at the 

steady or the periodic state. (a) Ra = 8.5 × 104. (b) Ra = 8.6 × 104. (c) 

Ra = 9.4 × 104. (d) Ra = 9.6 × 104. 



Figure 2 shows isotherms over a puffing cycle within the 

non-dimensional time of 24.6 for Ra = 9.4 × 104. According to 

figure 2, at t = t0, a polar plume appears from the open cavity, 

subsequently becomes weak, and separates to two polar plumes, 

as shown in figure (b). At the t = t0 + 12, the two polar plumes 

are becoming strong again and a puff is detached from the open 

cavity at t = t0 + 24.6, as displayed in figure2 (d). Finally, the 

two polar plumes merge.  
A time series of the x-velocity at the point (0, 0, -4.75) is 

plotted in figure3 from (a) to (d) in order to better understand 

the Hopf bifurcation and subsequent period-doubling 

bifurcations. Clearly, the plume from the open cavity is steady 

for Ra = 8.5 × 104 and thus the value of the x-velocity at the 

point (0, 0,-4.75) approaches constant eventually. But the x-

velocity is oscillatory for Ra = 8.6 × 104 as shown in figure2 

(b). This means that the critical value of the transition from a 

steady to a periodic state lies between 8.5 × 104 and 8.6 × 104. 

The first period-doubling bifurcation occurs around Ra = 9.4 × 

104. There are two repeating continuous waves with time, as 

shown in figure2 (c). The second period-doubling is found 
around Ra = 9.6 × 104, as shown by the replication of four 

continuous waves in figure2 (d). It is believed that infinite 

period-doubling bifurcations may occur before the plume from 

the open cavity become chaos. 

 

        

Figure 4. Phase space trajectories of x-velocity versus the w-velocity 
at the point (0, 0, -4.75) for (a) Ra = 8.6 × 104. (b) Ra = 9.4 × 104. (c) 

Ra = 9.6 × 104. (d) Ra = 1.1 × 105. 

To describe a series of period-doubling bifurcations, the 

phase space trajectory of the x-velocity against the w-velocity 

is given in figure 4. As discussed above, the Hopf bifurcation 

occurs around Ra = 8.6 ×103 and thus a limit cycle is shown in 

figure4 (a). Figure 4 (c) is a closed curve and lies on a T2 torus 

around Ra = 9.4 × 104, which is the first period-doubling 

bifurcation. Figure 4(d) displays the phase space trajectory 

lying on a T4 torus for Ra = 9.6 × 104 after the second period-

doubling bifurcation. The attractor in the figure4 (d) presents 

an infinite number of tori for Ra = 1.1 × 105 after a succession 

of period-doubling bifurcations. 

Conclusions 

The plume from the open cavity heated below appears 

periodic puffing when the Rayleigh number reaches Ra = 8.6 × 

104. As the Rayleigh number increases further, a succession of 

period-doubling bifurcations occur. In addition, the attractor is 

presented for better depicting period-doubling bifurcations. 
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