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Abstract

This study investigates the perturbation kinetic energy budget

of the instability modes in the circular cylinder wake using the

out-of-plane averaged perturbation kinetic energy (PKE) equa-

tion. This equation relates to the instability growth rates pre-

dicted through linear stability analysis techniques and provides

a means to understand the sources through which the linear

modes grow on the two-dimensional base flow. In this study,

the linear modes A and B are studied at their corresponding

transition Reynolds number. The most dominant rate of produc-

tion terms contributing to the mode A and B instability growth

are those derived from cross-flow gradients of the base flow ve-

locity, although the terms for mode B occur at higher rates than

those for mode A. The locus of the regions with high production

rates within the flow field (concerning the sum of the two domi-

nant production terms) shows that the perturbations for mode A

develop most rapidly in the elliptical core of the forming vortex,

while those for mode B are amplified most in the interface be-

tween the two forming vortices, reaching a maximum when the

vortex sheds from the cylinder. The mode A unstable flow then

describes weak secondary regions of production within the el-

liptical vortex cores further downstream, and is a feature absent

in mode B.

Introduction

Flows past cylindrical obstructions have been the subject of

keen research interest owing to its ubiquity in nature and en-

gineering, and exhibits fascinating changes in topology which

commonly arises from some form of transition in the flow. For

the wakes of a circular cylinder immersed in a uniform flow,

the time-invariance of the flow is lost through a Hopf bifur-

cation resulting in the well-known Karman vortex street [10].

Various secondary instabilities then proceed to manifest in the

wake such as the mode A and then subsequently mode B which

breaks the spanwise-invariance of the flow [19], and the shear

layer instability which causes the ‘drag crisis’ in the cylinder

wake [11], amongst others. The readers are directed to a review

of the literature by Williamson [20] for more information.

Of interest to this study are the mode A and B instabili-

ties, which form the initial sequence of bifurcations to three-

dimensional flow. Linear stability theory applied to these wakes

[1] exhibits a strong agreement with the instability modes re-

ported experimentally [18] and later computationally [15]. Util-

isation of these linear modes permit further analyses aiming

to understand the physical mechanism underlying these transi-

tions. In particular, [8, 16] investigated the extent to which the

mode A instability conforms to the elliptical instability mecha-

nism, and hypothesised the hyperbolic mechanism of mode B.

Although these transitions have been investigated extensively

in the past, the physical genesis of these instabilities are still

largely unknown. We approach this problem by viewing the

contributions to instability growth through an energetics per-

spective, which has yet to be applied on cylinder wake flows.

Methodology

The present study expands on several previous works on the

stability of the cylinder wake. The flow is governed by the in-

compressible Navier–Stokes equation

∇∇∇ ···uuu = 0,

∂uuu

∂t
+(uuu ···∇∇∇)uuu = −

1

ρ
∇∇∇p+ν∇2uuu. (1)

where {uuu, p} are the velocity and pressure fields, and ν and ρ
are the kinematic viscosity and density of the fluid. Choosing

the characteristic scale for length as the cylinder diameter, d,

velocity as the uniform freestream velocity, U∞, and time as

d/U∞ permits (1) to be characterised by a single parameter, the

Reynolds number Re =U∞d/ν.

Let QQQ= {UUU ,P} be the solution to the unsteady two-dimensional

base flow and qqq′ = {uuu′, p′} be an infinitesimal perturbation ap-

plied to the base flow such that the total flow qqq = QQQ+qqq′. Sub-

stituting these into (1) yields the base flow evolution equations

which are identical in form to (1), as well as the perturbation

evolution equations

∇∇∇ ···uuu′ = 0,

∂uuu′

∂t
+N(uuu) = −

1

ρ
∇∇∇p′+ν∇2uuu′, (2)

where N(uuu) represents the nonlinear advection term

N(uuu) = (UUU ···∇∇∇)uuu′+(uuu′ ···∇∇∇)UUU +(uuu′ ···∇∇∇)uuu′.

The linearised form of (2) can then be posed as a temporal

eigenvalue problem whose analysis can be further simplified by

expressing the perturbation field qqq′ by its Fourier integral. Solu-

tions of this form decouples the linearised governing equations

for each mode, permitting the stability analysis for each to be

performed independently (see [1] for more details).

To arrive at the perturbation kinetic energy (PKE) equation,

the scalar product of the perturbation velocity field uuu′ and the

momentum equation in (2) is formed, noting that PKE k′ =
uuu′ ··· uuu′/2. This equation is defined as (using the index notation

and summation convention)

∂k′

∂t
= − U j

∂k′

∂x j

+
∂

∂x j

(

−
1

ρ
p′u′iδi j +u′iu

′
iu
′
j +2νu′is

′
i j

)

− u′iu
′
j

∂Ui

∂x j
−2νs′i js

′
i j, (3)

where s
′
i js

′
i j is the double contraction of the strain-rate tensor

s
′
i j . The spanwise periodicity of the perturbation eigenmode (uuu′′′)

ultimately provides the impetus for one final simplification in

that these three-dimensional modes possess a zero out-of-plane

average. The out-of-plane (cylinder-spanwise in this system)

average of (3) thus simplifies significantly to

∂k′

∂t
=−U j

∂k′

∂x j
−u′iu

′
j

∂Ui

∂x j
−2νs′i js

′
i j , (4)



where the overbars on the various terms denote its out-of-plane

average, and perturbation terms qqq′ now (and hereafter) denote

specific eigenmodes. Note that (4) is only valid when it is ap-

plied on the linearised modes. In this equation, the first term

on the right hand side represents the mean rate of transport of

PKE by the baseflow, the second term represents the mean rate

of PKE production from base flow gradients, and the last term

quantifies the mean rate of PKE dissipation. Since the stability

analysis employed predicts the global growth of the perturba-

tions, its growth rate can be related to that of the PKE through

σ =
1

2Ek

∫
V

∂k′

∂t
dV , (5)

where σ is the instability growth rate predicted from the stability

analysis, and Ek =
∫

V k′ dV is the total PKE. This analysis ul-

timately provides an insight into the sources feeding the growth

or decay of the instability modes. The reader is directed to [13]

for more information on the application of this equation. Specif-

ically for the system under investigation, the volume integral of

(4) can be fully written out as

dEk

dt
=

∫
V

T +P +D dV ,

where T ,P and D are the local PKE transport, production, and

dissipation rate terms given by

T = −U
∂k′

∂x
−V

∂k′

∂y
,

P = −u′2
∂U

∂x
−u′v′

∂U

∂y
+u′v′

∂V

∂x
−v′2

∂V

∂y
,

D = −2νs′i js
′
i j. (6)

For brevity, the remainder of this report shall refer to each term

in the volume integral equation normalised by Ek as Ei j, where

i = T ,P ,D denotes the category of the term, and j = 1,2... is

the term number on the RHS of (6). For example, term EP 2

corresponds to the rate term
∫

V −(u′v′∂U/∂y)/Ek dV .

Numerical Method

For all cases, the governing equations are spatially discretised

using a nodal spectral-element method, and integrated forward

in time using a third-order accurate scheme based on backward

differentiation [7, 3]. Here, the flow variables through intercon-

necting nodes are described through a high order polynomial

shape function and interpolated at the Gauss–Legendre–Lobatto

quadrature points. The governing equations recast in weak form

through the Galerkin method of weighted residuals can then

be solved using the quadrature method. The Floquet stabil-

ity analysis routine also utilises an implicitly restarted Arnoldi

method in conjunction with the spectral-element method de-

scribed above to compute the eigenmodes of the linearised

equations. The eigenmodes of the linearised equations neces-

sarily possess perturbations of infinitesimally small magnitudes,

and as such its evolution through the linearised form of (2) does

not alter the base flow itself. This permits a straightforward

computation of the terms directly from a superposition of the

phase-linked perturbation field and base flow. The solver has

been implemented and validated previously in [14] and [5], in

stability analyses of various flows in [12, 17, 9], and in [13] for

the PKE analysis.

The mesh adopted for this study replicates that used by [2], but

utilises a polynomial shape function of order Np = 16 instead of

Np = 7. This increase in resolution was necessary to resolve the

perturbations which occur at smaller scales than the base flow.

For the base flow, a no-slip boundary condition was imposed

on the cylinder surface, a uniform streamwise velocity for the

inlet and transverse boundaries, and a zero reference pressure

applied on the outflow boundary. Neumann boundary condi-

tions on the outward normal gradient of pressure were enforced

on all boundaries assigned with a Dirichlet velocity condition to

preserve the overall third-order accuracy of the time integration

scheme [7]. For the evolution of the perturbation field, homo-

geneous boundary conditions were imposed on all boundaries

except for the outflow of the domain where the boundary condi-

tion matches that for the baseflow. A comparison of the results

[1] [4] Present

ReA 188.5 190 188.7

ReB 259 260.5 258.8

λA 3.96 3.97 3.98

λB 0.822 0.825 0.824

Table 1: Comparison of the transition Reynolds numbers and

critical wavelengths for modes A and B.

obtained from the stability analysis in the present study against

several published results (shown in table 1) serves as valida-

tion for the mesh and the solver. The remainder of this study

concerns itself with the flows near the criticality of each mode

in an attempt to investigate the sources through which PKE is

derived. For this, the mode A unstable flow was computed

at Re = 189 and the mode B unstable flow at Re = 259 (just

above the predicted transition Reynolds numbers), and the cor-

responding perturbation structures are shown in figure 1. The

computations were initialised using base flow solutions at the

instant the cylinder experiences maximum lift.

Figure 1: Structure of modes A and B shown to the end of the

simulated domain. Light (dark) isosurfaces mark positive (neg-

ative) streamwise vorticities at ±0.1max |ω′
x|, while the translu-

cent isosurfaces describe the vortex loops in the base flow at

λ2 =−1 [6].

Results and Discussions

Figure 2 illustrates the contribution of each term in the total

(volume integrated) PKE equation over the shedding cycle. For

mode A, each term acts to distinctly increase or subtract from

the instability growth rate throughout the shedding cycle (does

not change sign). The dominant positive contribution rate terms

for this mode are EP 2 and EP 4, while the instability growth

is most significantly damped through the dissipation term ED1

as anticipated. The profile for mode B instead shows that the

contribution of terms EP 1 and EP 3 to the instability growth

switches between phases of promoting and impeding the in-

stability growth, albeit at negligible amplitudes. Similar to

mode A, the dominant terms through which perturbation growth

accelerates are the EP 2 and EP 4 terms, and is most dissipative

through ED1. Although both modes derive perturbation growth



predominantly through similar terms, the distribution of most

terms for mode B appear to reach a peak at similar times, sug-

gesting that a common event in the base flow instigates the in-

stability. The instantaneous values of the transport terms for

mode B are approximately related through ET 1 =−ET 2. Over-

all, the contribution terms for mode A excite the flow at lower

rates than those for mode B, with mode A terms generally fluc-

tuating up to a rate of approximately Ei j ≈ 0.2 in contrast to

those for mode B with positive rate terms of up to Ei j ≈ 0.6
and dissipation events up to Ei j ≈ 1. We next considered the

Figure 2: Distribution of Ei j over the shedding period for

modes A (top) and B (bottom).

period averages of Ei j to determine the mean rate at which each

term effects perturbation growth. These results are shown in

figure 3, and are presented as a percentage of the net period-

averaged production rate
(

ΣEP

)

. An interesting feature of this

result is that the dissipation of total PKE for mode B occurs at

≈ 100%ΣEP —these cases being computed close to criticality

of the modes lead to dEk/dt ≈ 0, and because both transport

terms negate each other for mode B, the total production rate

necessarily balances the dissipation rate. This effect can be ob-

served in the eigenmode in figure 1 wherein the perturbation

structures for mode B fully dissipate within several shedding

cycles before reaching the end of the computed domain. A sim-

ilar argument applied to the energetics of mode A then relates

the perturbation structures observed at the outflow boundary to

an insufficient dissipation rate relative to the total production

rate. Another benefit of this analysis is the ability to visualise

Figure 3: Period-averages of Ei j displayed as a percentage of

net total PKE production (ΣEP ).

the spatial distribution of these terms contributing to the growth

rate of the instability as shown in figure 4. The top row in the

figure corresponds to the local rate of instability growth ∂tk
′

obtained from the sum of the terms, the middle row of the fig-

ure corresponds to the sum of the production terms ΣP , and

the bottom row corresponds to the sum of the two terms con-

tributing most aggressively to the instability growth (P 2+P 4).

For both modes, high PKE growth rates are observed to occur

within the strained ‘tails’ of the shedding vortex, and in the case

of mode B, in a secondary region along the interface where the

forming vortices interact. Observation of the net PKE produc-

tion rate as well as the dominant production rate terms describe

regions where the instability growth is most aggressive. These

regions possess a high PKE production rate, and for mode A

are observed to originate in the core of the forming vortices, in-

tensifying within the elliptic core region as the vortex develops.

These regions then move into the ‘tails’ of the shedding vortex,

amplified primarily by a high strain rate. These PKE produc-

tion maxima then diminishes rapidly with the strained vortex

tails after the vortex is shed as it relaxes back into an elliptical

form. Weak secondary regions of PKE production are observed

to develop within the cores of the elliptical vortices by about

x ≈ 10d, but decays as it advects downstream. The description

of the path and movement of these high production rate regions

for mode A reproduces almost exactly the description of the co-

operative elliptical instability mechanism proposed by [16], but

through an energetics perspective. For mode B, a similar re-

Mode A Mode B

Figure 4: Distribution of (top) ∂tk
′, (middle) ΣP , and (bottom)

P 2+P 4 for (left) mode A, and (right) mode B. Dark(light) con-

tours indicate regions of negative(positive) growth rate contri-

bution.

gion of high PKE production rate is again observed to initially

develop within the elliptical core region of the forming vortex.

However, the counter-rotating vortices in the forming region are

observed to interact at an earlier phase of the vortex shedding,

causing a secondary PKE production region to develop rapidly

along the interface between the forming vortices, which domi-

nates over the growth within the elliptical core. This production

region amplifies strongly within the braid region between the

primary vortices. As the vortex is shed, the production region is

observed to extend in into the forming region of the wake, pro-

viding a continuity in perturbation production which possibly

acts as a ‘blueprint’ for the perturbation growth and causing the

symmetry observed for mode B [21]; the production regions for

mode A within these braid shear layers appear to be separated

by a small region of perturbation decay which breaks up the

feedback. Again, these production regions for mode B dissipate

rapidly after the vortex is shed as it relaxes back into an ellipti-

cal shape. Unlike mode A, the elliptical vortices downstream do



not show any propensity for a further elliptical instability. For

both modes A and B, these production regions are observed to

develop most intensely within the first shedding cycle.

Conclusions

The sources contributing to perturbation kinetic energy growth

are elucidated for the mode A and B instabilities in the cylinder

wake. For mode A, a net negative rate is observed for the trans-

port terms, justifying the net outflow of the perturbations ob-

served in the eigenmode; the corresponding terms for mode B

sum to zero, reflecting the containment of the disturbance struc-

ture within the domain. For the production terms, mode A is ob-

served to derive PKE at a significantly lower rate (Ei j ≈ 0.2 for

the largest positively contributing term) compared to mode B,

whose largest positive contributor fluctuates at Ei j ≈ 0.5. Of the

four production terms, only the terms involving cross-flow gra-

dients of base flow velocity (EP 2 and EP 4 in this report) are sig-

nificant, with the streamwise gradient production terms EP 1 and

EP 3 being either weakly dissipative as observed for mode A, or

negligible as observed for mode B.

For the local distribution of each term, the path followed by the

the high production region in mode A follows a similar descrip-

tion for the perturbation growth described for the cooperative

elliptical instability mechanism in [16]—perturbation growth

originates in the elliptical core of the forming vortex and is

stretched out into the tail of the vortex as it sheds, becoming am-

plified by an increased local strain rate. A different scenario is

observed for mode B where the PKE growth is strongly ampli-

fied along the stagnation streamline to the shedding vortex. In

both cases, the largest contribution to PKE growth is observed

to occur as the vortex splits to form the hyperbolic points.
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