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Abstract
In this paper, a framework for error analysis of numerical
schemes in multidimensional wavenumber space under spa-
tial and temporal (full) discretization is introduced. The nu-
merical anisotropy of the two-dimensional advection and com-
pressible Linearised Euler Equations (LEE) was analysed us-
ing this framework under different spatial discretisation meth-
ods; Fourier spectral (FS), finite difference and hybrid FS/finite
difference. For the compressible two-dimensional LEE, it was
found that the dispersive error from the use of a finite differ-
ence method in one spatial direction can propagate into the spa-
tial direction for which a FS method was employed. This is
because, unlike the advection equation, the additional acous-
tic term within the semi-discretized dispersion relation of the
compressible LEE makes the group velocities a function of the
modified wavenumbers in both spatial directions.
Introduction
In high accuracy Direct Numerical Simulation (DNS) of turbu-
lence as well as aeroacoustic, there is a need for high order nu-
merical schemes with low dispersive and dissipative properties.
Therefore, the assessment of numerical schemes is critical in
determining schemes fit for purpose. The use of spectral anal-
ysis to determine dispersive (phase) and dissipative (amplitude)
error of finite difference schemes in one dimensional wavenum-
ber space is well established and has been extensively studied in
[3, 7, 9]. Since the accuracy of the numerical solution is directly
dependent on both the spatial and temporal scheme in combina-
tion, better ways to assess numerical error under full discretiza-
tion are desirable. The assessment of numerical schemes under
full discretization in one dimensional wavenumber space has
been studied in [6]. In the current work, numerical schemes will
be assessed in multidimensional wavenumber space under full
discretization in order to have a more complete understanding
of their accuracy. In particular, the effect of hybrid spatial dis-
cretization on dispersive errors for both the advection equation
and the compressible LEE is investigated. The starting point of
this framework will be on the finite difference method and its
associated modified (scaled) wavenumber [4, 9].

Methodology

Finite Difference Method

For linear finite difference methods, the numerical approxima-
tion of a spatial derivative can be expressed as follows:
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where al and bm are coefficients which represent weighting that
determines how much each node contributes to the calculation
of the derivatives. The application of Fourier transforms to
equation (1) [9, 7, 3] leads to an expression for the modified
scaled wavenumber (k∗x ∆x). The real and imaginary part of the
modified wavenumber represent the dispersive and dissipative
characteristic of the spatial discretization scheme respectively.
Dispersive properties of central type schemes such as the sixth
order accurate central compact (CCOM6) [3], sixth order ac-

curate central difference (CDS6) as well as the one sided third
order accurate backward difference (BDS3) scheme are shown
in figure 1. The black solid line represents the ideal case (spec-
tral) for which all scaled wavenumber up to the Nyquist limit
are resolved; k∗∆x = k∆x. High resolution spatial schemes such
as the CCOM6 scheme are able to match this ideal relation up
to a high wavenumber range before their modified wavenumber
value starts decreasing. While central schemes are non dissipa-
tive, the modified wavenumber of the third order accurate back-
ward difference (BDS3) scheme has an imaginary component
which makes it inherently dissipative.
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Figure 1: Real component of the modified wavenumber relation
for: CCOM6, CDS6, BDS3, Spectral

Fourier Spectral Method

In FS method, the governing equations are transformed into
Fourier space using discrete Fourier transforms. Considering a
one dimensional inverse Fourier transform of the variable, φ in
a [0,2π] domain, a first order spatial derivative in Fourier space
can be expressed as follows [1]:
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where j = 0.....N−1. N represent the total number of points in
the discretized domain. FS method does not produce any dis-
persive error because the actual Fourier transform of the spatial
derivative is being used in the numerical calculation. As such,
it is able to achieve ideal spectral accuracy (k∗∆x = k∆x). How-
ever, Fourier series are limited to periodic functions and not
suited for functions characterised by sharp discontinuity such
as shockwaves. Since the FS method can numerically resolve
solutions up to a high wavenumber, high frequency spurious
oscillation in the interpolation around sharp gradients of dis-
continuities can get amplified, leading to numerical instability.

Full Discretization Analysis
For simplicity, the two-dimensional advection equation will be
used to illustrate the extension of linear spectral analysis of
spatial discretization scheme into full discretization framework.



Thereafter, the dispersion relation of the two-dimensional LEE
will be introduced, from which the analysis will be extended. In
all of the analysis in this section, it is assumed that ∆x = ∆y.

2D Advection

The two-dimensional advection equation can be written as fol-
lows:

∂φ

∂t
+ ū

∂φ

∂x
+ v̄

∂φ

∂y
= 0. (3)

By expressing φ in terms of its inverse Fourier transform
and taking its derivative with respect to x, y and t, the two-
dimensional advection equation can be simplified to the follow-
ing form [9]:

∂

∂t
φ̂(k1,k2, t) =−ūik∗1φ̂(k1,k2, t)− v̄ik∗2φ̂(k1,k2, t), (4)

from which the modified wavenumbers, k∗1 and k∗2 are intro-
duced into the spatial derivative terms due to the finite differ-
ence approximation. In order to perform analysis on the full
discretization scheme, the solution in Fourier space must be ad-
vanced through time using a numerical time marching scheme.
In this work, the fourth order accurate explicit Runge Kutta time
(RK4) discretization method [4] was used for the analysis and
simulation. Substituting the right hand side of equation (4) into
the RK4 time discretization equation leads to the following ex-
pression [2]:
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where ω∗semi = ūk∗1 + v̄k∗2 represents the semi-discretized disper-
sion relation of the two-dimensional advection equation. The
term in the square bracket is the numerical amplification factor,
Z which now contains information on the numerical error due to
both the spatial and temporal discretization schemes. The CFL
number, R = ū∆t

∆x = 0.1 which is used within the numerical am-
plification factor as a proxy for the time step is kept to a small
value in order to neglect the effect of temporal discretization.
Z is a complex number, that can be expressed as Z = |Z|e−iψ,
where |Z| =

√
ℜ(Z)2 +ℑ(Z)2 and ψ =−arctan( ℑ(Z)

ℜ(Z) ). A mea-
sure of the dispersive and dissipative error under full discretiza-
tion is to consider the numerical group velocity and the absolute
magnitude of the numerical amplification factor, |Z|. ψ repre-
sents the phase shift of the amplification factor. The numerical
group velocity is formulated as follows [2]:
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1
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∂k1
, V ∗grp =

1
∆t
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∂k2
. (6)

The y component of the normalised group velocities
(V ∗grp/vexact

grp ) in two-dimensional wavenumber space for the
CDS6 scheme is plotted in figure 2. V ∗grp is considered for this
analysis in order to have a consistent comparison with the re-
sults of the LEE in the next section. The value of ū = v̄ = 0.5
is kept to the same. For the advection equation, the exact so-
lution of the group velocity, vexact

grp is 0.5. As seen in figure 2,
the normalised group velocity (V ∗grp/vexact

grp ) is only governed by
the differencing scheme used in the k2∆y direction since there is
no variation in the k1∆x direction. Figure 2 is also valid for the
hybrid FS/CDS6 discretization case where the CDS6 scheme is
used in the y direction. V ∗grp/vexact

grp is only dependent on the
discretization scheme used in the y direction. The normalised
group velocity results of the FS/FS and CDS6/FS discretization
case are presented in table 1. For cases where FS method is

used in the y direction, the normalised group velocity becomes
1.0 for all wavenumbers. A summary of the results for all the
different spatial discretization method is shown in table 1.
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Figure 2: V ∗grp/vexact
grp in k1∆x−k2∆x plane for the case: a) CDS6

scheme applied in the x and y direction (CDS6/CDS6), b) FS
method applied in the x and CDS6 scheme applied in the y direc-
tion (FS/CDS6). RK4 temporal scheme. Black cross represents
the solution (V ∗grp/vexact

grp = 0.734) corresponding to an initial
condition of k∆ = 9π

10 and wave propagation angle, θw = 30◦.

Case Spatial discretization V ∗grp/vexact
grp

a CDS6 in x, y (CDS6/CDS6) figure 2
b FS in x, CDS6 in y (FS/CDS6) figure 2
c CDS6 in x, FS in y (CDS6/FS) 1.0 for all k1∆x, k2∆y
d FS in x, y (FS/FS) 1.0 for all k1∆x, k2∆y

Table 1: V ∗grp/vexact
grp for advection eq.

Compressible 2D Linearized Euler Equations

The compressible formulation of the two-dimensional LEE in
conservative form can be expressed as follows:
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Field variables denoted with (..)
′

represent the perturbed field
while those with (..) represent the time averaged field. By
applying a Fourier Laplace transform to the conservative vari-
ables, U and solving for their eigenvalues, it can be shown that
the dispersion relation of the two-dimensional LEE reduces to
the following form [5]:

ω = ūk1 + v̄k2︸ ︷︷ ︸
advective

+αa
√

(k1)2 +(k2)2︸ ︷︷ ︸
acoustic

, (9)

where α takes on the value of 1, -1 and 0 depending on the
eigenvalues sought for. The value of α will be taken as 1 for
the analysis used in this work. a represents the speed of sound.
Analogous to the advection equation, spatial discretization ef-
fects are taken into account via the modified scaled wavenum-
ber, k∗∆ = f (k∆). The semi-discretized form of the dispersion
relation can be expressed as follows:

ω
∗
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In equation (10), the first two terms on the right hand side are
the same as those of the advection equation and they represent
the advective term. The last term on the right hand side repre-
sents the acoustic term. The significance of this term under a
hybrid discretization framework can be better understood if the
group velocities are computed under the consideration of spa-
tial discretization effects [5, 8]. The y component of the group
velocity (V ∗grp) was selected for this analysis as the propagation
of dispersive error from the discretization scheme used in the x
direction is more pronounced. The group velocity (V ∗grp) under
spatial discretization effects can be expressed as follows:
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A similar expression can be derived for U∗grp. While the ad-
vection equation contains only the advective term, the group
velocities (U∗grp and V ∗grp) of the LEE are a function of the mod-
ified wavenumbers in both spatial directions as a result of the
acoustic term. The contribution of the acoustic term becomes
significant when the ratio of k∗1

k∗2
becomes small. The normalised

group velocity (V ∗grp/vexact
grp ) in two-dimensional wavenumber

space for the CDS6/CDS6 case is plotted in figure 3. The val-
ues of ū and v̄ are set to 0.5 and 0.0 respectively. By keeping
v̄ = 0, the group velocity (V ∗grp) error originating solely from
the acoustic term can be analysed. As before, the CFL num-
ber (Ra = a∆t

∆x = 0.1), in terms of the speed of sound, a is kept
to a small value. The group velocities are computed according
to equation (6) using the numerical amplification factor from
equation (5) and the semi discretized dispersion relation from
equation (9).

Unlike the advection equation, the normalised group velocity
of the LEE under different spatial discretization methods show-
cases variation in both spatial directions as a result of the ad-
ditional acoustic term. A summary of the results is shown in
table 2 and figure 3. The FS/FS case (figure 3b) represents the
exact solution of the system. While the exact solution of the
advection equation has a constant group velocity (V ∗grp) value
of 0.5 for all scaled wavenumbers and wave propagation angle,
θw, the exact solution of the LEE varies according to θw. As
seen in figure 3b, a change in the angle of the dotted line about
the origin (0,0) for a given k∆ gives a different group velocity.
For an initial condition of k∆ = 9π

10 and θw = 30◦, a faster nor-
malised group velocity was found in both the hybrid CDS6/FS
case (figure 3c, V ∗grp/vexact

grp = 1.506) and the CDS6/CDS6 dis-
cretization case (figure 3b, V ∗grp/vexact

grp = 1.08) than the exact
solution (V ∗grp/vexact

grp = 1.0). The exact group velocity (vexact
grp ) is

found to be 0.503. Also, the result of the CDS6/CDS6 case is
more accurate than in the hybrid CDS6/FS case.

Case Spatial discretization V ∗grp/vexact
grp

a CDS6/CDS6 figure 3a
b FS/FS figure 3b
c CDS6/FS figure 3c

Table 2: V ∗grp/vexact
grp for LEE

Numerical Set-up

Numerical variables are marched in time using a small CFL
number with the fourth order accurate Runge Kutta time in-
tegration scheme. Spatial derivatives are computed using the
CDS6 scheme, FS method solely or both methods in combi-
nation. In the hybrid discretization case, the CDS6 scheme is
applied in the x and the FS method is applied in the y direction.
Periodic boundary conditions are imposed at all edges of the do-
main. A 300 × 300 grid is used for all numerical experiments.
For the advection equation, ū = v̄ = 0.5. For the LEE, ū and v̄
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Figure 3: V ∗grp/vexact
grp in k1∆x− k2∆x plane for the case: a)

CDS6/CDS6 b) FS/FS (exact solution) c) CDS6/FS, α = 1 and
RK4 temporal scheme. Black cross represents the solutions
(V ∗grp/vexact

grp = 1.082,1.0,1.506) corresponding to an initial con-
dition of k∆ = 9π

10 and θw = 30◦ for figures a,b,c.

are set to 0.5 and 0 respectively. The density, ρ̄, is set to 1.0 for
the LEE. For both equations, the prescribed initial conditions
are as follows:

φ(x,y,0) = e−0.5(x2+y2) sin(k1x+ k2y), (12)

where k1 = k cos(θw) and k2 = k sin(θw). θw represents the ini-
tial orientation of the wave front with respect to the grid. A
value of θw = 30◦ and k∆ = 9π

10 was prescribed. In the case
of the LEE, φ represents the perturbed pressure variable and all
other variables are set to zero initial condition. The wave packet
is centered at the origin (0,0) at t = 0. A large value of k∆ was
used in order to illustrate the dispersion error.



Results

In this section, the results of the analysis are compared to
numerical experiments. For the advection equation, the nor-
malised group velocities of the different cases are presented in
table 3. The numerical and analytical group velocity results are
illustrated in figure 4. The numerical results are shown by the
shaded wave packets and the coloured arrows show the loca-
tion of the wave packets predicted by the group velocities. It
can be seen that ypos of the wave packet of the CDS6/FS case
(blue arrow) matches the solution of the FS/FS case (black ar-
row) even though the xpos of the wave packets does not match.
This implies that the dispersion error arising from the CDS6
scheme applied in the x direction has no effect on V ∗grp. This is
because the group velocity computed in one spatial direction is
only governed by the gradient of the modified wavenumber and
the advection velocity in the spatial direction considered (e.g.
V ∗grp = v̄ ∂k∗2

∂k2
).

Spat. discret. U∗grp/uexact
grp V ∗grp/vexact

grp xpos ypos
CDS6/CDS6 -1.315 0.733 -1.315 0.733
FS/FS 1.0 1.0 1.0 1.0
CDS6/FS -1.315 1.0 -1.315 1.0

Table 3: Group velocities and location of wave packet at t=2 for
advection eq, uexact

grp = 0.5, vexact
grp = 0.5.

Figure 4: Location of wave packets at t=2 for different spatial
discretization methods for k∆ = 9π

10 and θw = 30◦.

For the LEE, the normalised group velocities of the different
discretization cases are presented in table 4. These results are
illustrated in figure 5. For the prescribed initial condition, there
exist two wave packets (α = 1,−1) travelling in different direc-
tions. For conciseness, only the solution for α = 1 is shown.
As before, the numerical results match the solution of the group
velocities (coloured arrows). For the LEE, the ypos of the wave
packet of the CDS6/FS case (blue arrow) is greater than the ypos
of the FS/FS case (black arrow). This implies that dispersive
errors from the CDS6 scheme applied in the x direction affect
V ∗grp. Also, it can be seen that the ypos of the CDS6/CDS6 case
is more accurate than the CDS6/FS discretization case when
compared to the exact solution.

Spat. discret. U∗grp/uexact
grp V ∗grp/vexact

grp xpos ypos
CDS6/CDS6 -1.125 1.081 -3.074 1.088
FS/FS 1.0 1.0 2.732 1.01
CDS6/FS -1.11 1.503 -3.032 1.512

Table 4: Group velocities and location of wave packet at t=2 for
LEE, uexact

grp = 1.366, vexact
grp = 0.503.

Conclusions
For the advection equation, the dispersive error originating from
the finite difference scheme used in the x direction has no in-

Figure 5: Location of wave packets at t=2 for different spatial
discretization methods for k∆ = 9π

10 and θw = 30◦. Only the
solution for α = 1 is plotted

fluence on V ∗grp. For the LEE, the dispersive error originating
from the spatial differencing scheme used in the x direction has
an influence on V ∗grp. It was found that the error in ypos origi-
nating from the dispersive error of the finite difference scheme
used in the x direction becomes significant when k∆ & 0.7π

for θw = 30◦. In contrast to commonly held belief that a hy-
brid Fourier spectral/finite difference scheme would generally
give better numerical resolution characteristic than a full finite
difference scheme, it was found that this is only true for the
two-dimensional advection equation for all values of k∆. In the
case of the LEE, it was shown that the numerical solution of
the hybrid CDS6/FS discretization case is less accurate than the
CDS6/CDS6 case for values of large k∆.
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