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Abstract

A linear state-space reduced-order model for the lift gener-
ated by a two-dimensional pitching membrane at low Reynolds
numbers is presented. The framework couples an unsteady
aerodynamic model for the aerodynamic loads generated by
rigid pitching and by the flexible degrees of freedom of the wing
with a linear structural membrane equation. The lift frequency
response of the pitching membrane with respect to the mem-
brane’s structural parameters is investigated, comparing the re-
sults with the response of a rigid wing. The analysis is extended
by taking into account nonlinear structural effects using a har-
monic balance method in the frequency domain. The nonlin-
ear lift frequency response is obtained as a function of the am-
plitude of the pitching angular acceleration by iteratively solv-
ing a set of nonlinear equations for the membrane-fluid system
and retaining only the first harmonic of the lift response. The
effects of the structural nonlinearities on the lift response, to-
gether with the accuracy of the single-frequency harmonic bal-
ance approach, are discussed. Validations of the results are car-
ried out using Direct Numerical Simulations.

Introduction

The fluid-structure interaction of membrane wings has gained
a lot of attention in recent years, thanks to the growing interest
in Micro Air Vehicles (MAVs). Many small-scale natural flyers
with flapping wings take advantage of the aerodynamic bene-
fits provided by compliant wings, such as delayed and softened
stall and augmented lift at high angles of attack with respect to
rigid wings [13], and they represent an inspiration for the de-
sign of MAVs. The mutual interaction between the membrane
and the flow during flapping-flight is characterized by strong
coupled nonlinear phenomena and it represents a major chal-
lenge for scientists and engineers. Experiments [1, 10, 13] and
high-fidelity simulations [3, 4, 11] are considered reliable tools
to investigate the problem, but they are expensive and often fail
to provide general relationships between the structural param-
eters and the aerodynamic performance of the wing. Simpli-
fied theoretical models are present in the literature. Limiting
the analysis to models based on the coupling between the equa-
tion of an extensible membrane and an aerodynamic model, it is
worth to mention the works of Song et al. [13] and Waldman and
Breuer [16] on nonlinear membranes subjected to static aero-
dynamic loads and the linear unsteady models of Tiomkin and
Raveh [15], Sygulski [14] and Nardini et al. [9].

For natural flyers such as bats, the maximum camber of the
wing can easily reach values higher than 10% of the chord dur-
ing flight, resulting in strong nonlinear unsteady effects excited
in the wing’s response. Hence, there is a need for theoretical
models that take into account the nonlinear unsteady behavior
of the wing, while avoiding the direct numerical integration of
the equations. Classical harmonic balance methods have been
successfully used in many applications to model the nonlinear
periodic response of dynamic systems to harmonic inputs in
the presence of nonlinearities. Some examples related to fluid-
structure interaction include aeroelastic limit-cycle oscillations

in transonic flows [17], cylindrical vortex shedding and pitching
airfoils [6] and unsteady nonlinear flows in cascades [5]. Har-
monic balance methods are based on the idea of representing
the input and the output of the system as a sum of harmonics
using a truncated Fourier series and solving for the harmonic
coefficients of the output through an iterative method.

In the present work, the harmonic balance method is used to
generate a model for the fluid-structure interaction of a pitch-
ing membrane wing by coupling the quasi-linear equation of an
extensible membrane with a linear aerodynamic model for low
Reynolds numbers flows. The present approach can be consid-
ered as an extension of the linear model introduced by Nardini
et al. [9] to the nonlinear regime. The present model will inves-
tigate the linear and nonlinear lift response of a pitching mem-
brane, focusing on the effect of the structural nonlinearities and
the structural parameters such as tension coefficient affect the
response. An accurate representation of the frequency lift re-
sponse is fundamental in the design of MAVs, which, due to
their small inertia, present flight dynamic characteristics dom-
inated by the aerodynamic forces, that allow them to perform
rapid and precise maneuvers. The results from the model are
validated against direct numerical integration of the governing
equations and against Direct Numerical Simulations (DNS).

Fluid-structure Interaction Model

Membrane’s Nonlinear Dynamics

The structural dynamic behavior of the membrane wing is
modeled as a nonlinear extensible string subjected to a normal
force. This model has already been successfully used in previ-
ous works [3, 11, 12] and it is presented here in its nondimen-
sional form. The following equation will be used as a starting
point to develop a quasi-linear and a linear structural model. In-
dicating with TS the tension of the membrane, with h and c the
wing’s thickness and chord respectively and with ρs the den-
sity of the material, the nonlinear membrane equation can be
expressed as
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= ∆Cp +C f . (1)

µ = ρsh/ρc is the density ratio and represents the ratio between
the density of the membrane and the density of the fluid ρ,
while cT = 2TS/ρU2c is the tension coefficient. U indicates the
free-stream velocity and ∆Cp = 2

(
plow− pup)/ρU2 represents

the pressure difference between lower and upper surface of the
wing, while C f = 2 f/ρU2 is the force coefficient, with f being
an external force. The membrane’s vertical displacement w has
been normalized with the wing’s chord c, obtaining w̄ = w/c,
while x̄ = x/c and t̄ = tU/c represent dimensionless space and
time, respectively. From now on, the bar will be omitted and t,
x and w(x, t) are assumed to be nondimensional. The tension of
the membrane is represented as follows
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∫ 1

0
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where Es indicates the modulus of elasticity of the material, δ0
the membrane pre-strain and δ the length increase of the mem-
brane due to the deflection. The membrane is pinned at the two
ends, resulting in w(x = 0, t) = 0 and w(x = 1, t) = 0 at the
boundaries. Equations (1-2) will be referred to as the nonlinear
membrane equations.

Linear Fluid-structure Interaction Model

A linear structural equation is obtained from equations (1-2)
by performing a Taylor expansion of the nonlinear terms up to
the first order, resulting in

2µ
∂2w
∂t2 − cT0

∂2w
∂x2 = ∆Cp +C f , (3)

cT0 =
2T0

ρU2c
, T0 = Eshδ0, δ≈ 0. (4)

As stated in equation (4), the tension coefficient is constant and
it only depends on the initial pre-strain. By decomposing the
deflection w using a truncated Fourier series, equation (3) can
be rewritten in terms of deflection coefficientsWk as

2µẄk + k2
π

2cT0Wk = ∆Cpk +C f k, (5)

where the deflection coefficients are defined as follows

w(x, t) =
N

∑
k=1
Wk(t) · sin(kπx) , for x ∈ [0,1] . (6)

Ẅk represents the second derivative of the k-th deflection coef-
ficient and N indicates the total number of modes considered.
For the present work we use N = 10. A Fourier decomposition
is also performed on the pressure ∆Cp and on the forcing C f ,
with the coefficients ∆Cp and C f defined as in equation (6).

The structural model represented by equation (3) is coupled
to a linear aerodynamic model obtained from DNS at a chord-
based Reynolds number Re = 100. The input to the aerody-
namic model is represented by the motion of the wing, decom-
posed into rigid pitching about the leading edge and deflection.
In order to capture the unsteady acceleration-related aerody-
namic effects (e.g. added mass), the input to the system involves
the wing’s angular acceleration and the second derivative of the
deflection coefficients [8]. The output is represented by the lift
coefficient CL = 2L/ρU2c, where L is the lift of the wing, and
by the Fourier modes of pressure. A schematic representation
of the model is shown in figure 1, while details of the mod-
eling procedure and of the coupling with the structure can be
found in [8] and [9], respectively. When considering a maneu-

Figure 1: Schematic representation of the linear aerodynamic
model. L indicates the transfer function of the system.

ver, the inertial force due to a rigid acceleration of the mem-
brane (e.g. pitching or heaving) is taken into account as an ex-
ternal force. For the specific case of a membrane pitching about
its leading edge, C f = 2µα̈x. Hence, the linear fluid-structure
interaction resulting from the coupling of the structural and the
aerodynamic model is a single-input single-output system with
the angular acceleration as the only input and the lift coefficient
as the output; the deflection and the pressure term are absorbed
into the internal dynamics. The advantage of having a linear
model lies in the amount of information that can be extracted

from the system without requiring an expensive campaign of
simulations, such as the frequency behavior or the stability as a
function of the structural parameters [9].

Quasi-linear Model - Harmonic Balance Method

Although the linear model offers an efficient and accurate rep-
resentation of the membrane’s dynamics in cases in which the
change in the elongation is negligible, it neglects the tension
increase due to the membrane’s elongation, which is of funda-
mental importance in applications involving moderate and large
deformations. To overcome this intrinsic limitation of the linear
model, a quasi-linear structural equation can be derived from
equation (1) by performing a Taylor expansion and retaining
terms up to the third order, as shown in [7]. The result is a
quasi-linear model that maintains the Fourier decomposition in-
troduced by the linear model, while retaining the nonlinear in-
crease of the tension given by the membrane’s elongation. Fol-
lowing [7], the quasi-linear model can be expressed as

2µẄk + k2
π

2cTWk = ∆Cpk +C f k, (7)

cT =
2Esh(δ0 +δ)

ρU2c
, δ =

π2

4

N

∑
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m2W2
m. (8)

The harmonic balance method is based on the assumption that
the variables present in equations (7-8), coupled with the lin-
ear aerodynamic model from Fig. 1, can be approximated by a
truncated Fourier series involving multiples of the fundamental
frequency ω, which is the fundamental frequency of the forcing
term α:

α(t) ≈ α0+
H

∑
h=1

(α2h−1 cos(hωt)+α2h sin(hωt))

Wk(t) ≈Wk,0+
H

∑
h=1

(
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)
∆Cpk (t)≈ ∆Cpk,0+

H
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)
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H
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)
.

α does not appear explicitly in equation (7), but it is contained
in the term ∆Cpk, which is obtained from the linear aerody-
namic model summarized in figure 1. Given the harmonic co-
efficients of the input α, equation (7) coupled with the aerody-
namic model can be solved for the (2H + 1)×N coefficients
Wk,2h−1,Wk,2h (with N representing the total number of struc-
tural modes and H the total number of harmonics considered)
using a Newton-Raphson iterative procedure. The harmonic co-
efficients of CL are finally obtained from α̈ and Ẅk through the
aerodynamic model.

The number of harmonics retained in the solution is decided
a priori and represents one of the parameters of the method.
When large nonlinear effects are excited in the system, the num-
ber of harmonics that give a non negligible contribution to the
response increases. When a single harmonic is used, the method
is sometimes referred to as a describing function and it is help-
ful to compare the frequency response of linear and nonlinear
systems through magnitude plots.

Results

Linear Lift Frequency Response

The frequency behavior of the linear model in terms of mag-
nitude of the lift response for µ = 0.5 and for different values
of the tension coefficient cT is represented in figure 2. The plot
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Figure 2: Magnitude of the linear lift frequency response for cT
from 0.5 to 4 with increments of 0.5 (lines from black to grey).
The dash-dot line represents the response of the rigid wing.

also includes the lift response of a rigid wing, indicated with a
dash-dot line. The flexibility of the membrane introduces a res-
onance in the response, as indicated by the peaks in the magni-
tude response. The resonance frequency depends on the tension
coefficient: the lower cT (hence, the higher the compliance of
the membrane), the lower the resonance frequency. At low fre-
quencies, a higher compliance results in higher lift coefficient
generated, as often mentioned in the literature [3, 13]. As the
tension coefficient increases, the low frequency CL approaches
the CL of the rigid wing.

Quasi-linear Lift Frequency Response

When the quasi-linear model is considered, for a given set of
structural parameters the output CL is not only a function of the
frequency, as in the linear case, but it also depends on the am-
plitude of the input α̈. Using the harmonic balance method with
a single harmonic (H = 1), the lift frequency magnitude plot is
obtained for different values of the input α̈ = −α2ω2 sin(ωt),
where α2 is the coefficient α2h when h = 1. The lift plot is
obtained with a Newton-Raphson method starting from an ini-
tial frequency ω0 and marching in frequency with increments of
∆ω; the solution at a generic ωi is used as the initial guess for
the following iteration at ωi+1 = ωi +∆ω. Results for µ = 0.5,
Eh = 250 and δ0 = 0.002 (resulting in cT = 1) and α2 from 0.5
to 10 degrees are shown in figure 3. The top plot shows the
solutions found by starting from ω = 0.01 and marching for-
ward with positive increments of ∆ω, while the bottom plot has
been obtained by decreasing the frequency from ω = 100 with
a negative ∆ω.

For small values of α2, the linear solution approaches the
quasi-linear solution. As the amplitude of the oscillations in-
creases, the response is dominated by the nonlinear membrane
dynamics, which affects both the magnitude of the response and
the resonance frequency. More importantly, the jumps present
in the lift for some values of α2 are an indicator of a hysteretic
behavior [2]. The two branches of the solution for α2 = 2.5
degrees obtained by marching the frequency forward or back-
wards are represented in figure 4; the discontinuities in the lift
response are highlighted with a dash-dot line. For this partic-
ular case, there are two frequency intervals that present hys-
teresis, corresponding to different structural modes excited by
the input. By observing equations (7-8), it is possible to no-
tice an analogy with a cubic Duffing oscillator, which hints to
the presence of an additional unstable branch [2]. The unsta-
ble branch, represented with a black solid line in figure 4 for
the low frequency hysteresis, can be found with the harmonic
balance method by initializing the initial guess of the Newton-
Raphson iteration with random numbers until a new solution,
distinct from the two stable cases, is reached. That solution can
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Figure 3: Lift frequency response of the quasi-linear model
for α2 from 0.5 to 10 degrees with increments of 0.5 degrees.
The top plot represents the solution obtained marching forward
in frequency, the bottom plot contains the solution obtained
marching backwards.

then be marched by updating the frequency ∆ω to find the un-
stable branch. Because of its instability, the unstable solution
cannot be generally obtained by direct integration in time of the
membrane equation.
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Figure 4: Hysteretic behavior of the nonlinear response for
α2 = 2.5 degrees and representation of the two stable branches
(grey lines) and the unstable branch (black line) of the response.

The periodic response of a nonlinear system usually contains
more than one harmonic, with the higher harmonics as multiples
of the fundamental frequency. The amplitude of the harmonics
decreases with the harmonic index h, indicating that the lower
harmonics give the largest contribution to the response, hence
justifying the use of a truncated Fourier series to represent the
system’s response. Although a single harmonic approach often
represents a good approximation of the full nonlinear response,
for strong nonlinearities higher harmonics might be considered
to improve the accuracy of the method. An example is shown
in the next section.

Validation

A comparison between the lift response from the harmonic
balance method and from the direct integration of the full non-
linear membrane equation for α2 = 2.5 degrees is represented
in figure 5. The direct integration is performed by means of
a 4th-order Runge-Kutta method. Both linear and nonlinear
aerodynamics are considered. The linear aerodynamics is rep-
resented by the linear reduced-order model summarized in fig-



ure 1, while for the nonlinear aerodynamics a well-validated
DNS solver with an immersed boundary method to represent
the wing’s geometry is used. Details on the DNS solver and on
the coupling with the nonlinear equation can be found in [11].
The membrane’s structural parameters are the same as described
in the previous section and the Reynolds number is 100.
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Figure 5: Comparison between harmonic balance solution and
direct numerical integration for a membrane wing pitching at
an angle of 2.5 degrees. Harmonic balance solutions are rep-
resented with lines from black to grey for an increasing num-
ber of harmonics (1-3-5-7 respectively); solid lines represent
the solution obtained marching forward in frequency, dash-dot
lines represent the solution obtained marching backwards. Re-
sults from direct numerical integration of the nonlinear equa-
tion coupled with the linear aerodynamic model are shown with
diamonds (increasing frequency) and squares (decreasing fre-
quency). DNS solutions are represented with circles in the box.

The model is in excellent agreement with both direct numeri-
cal integration and DNS. Such an agreement between linear and
nonlinear aerodynamics indicates that, for the considered angle
of attack, the strongest nonlinearity is represented by the struc-
ture. The quasi-linear solution converges with 5 harmonics.

Conclusions

Reduced-order models for the fluid-structure interaction of a
pitching membrane at Reynolds number 100 have been intro-
duced. The models are based on approximations of the non-
linear extensible string equation, coupled with a linear model
for the fluid. The quasi-linear model is represented by using a
harmonic balance method in the frequency domain. The per-
formance of the two models are compared by analyzing the
lift frequency response of the membrane. When strong non-
linear effects are excited in the response, the linear model fails,
while the quasi-linear model is able to capture the behavior of
the membrane, still maintaining a low computational cost. The
presence of a hysteresis in the nonlinear lift response was found.
Finally, using both a linear aerodynamic model and DNS, the
quasi-linear model was shown to produce accurate results.

Acknowledgements

Computing resources provided at the NCI National Facility
systems at the Australian National University through the Na-
tional Computational Merit Allocation Scheme supported by
the Australian Government are acknowledged.

References

[1] Arbós-Torrent, S., Ganapathisubramani, B. and Palacios,
R., Leading- and trailing-edge effects on the aeromechan-
ics of membrane aerofoils, Journal of Fluids and Struc-
tures, 38, 2013, 107–126.

[2] Ghandchi-Tehrani, M., Wilmshurst, L. I. and Elliott, S. J.,
Bifurcation control of a Duffing oscillator using pole
placement, JVC/Journal of Vibration and Control, 21,
2015, 2838–2851.

[3] Gordnier, R. E., High fidelity computational simulation
of a membrane wing airfoil, Journal of Fluids and Struc-
tures, 25, 2009, 897–917.

[4] Gordnier, R. E. and Attar, P. J., Impact of flexibility on
the aerodynamics of an aspect ratio two membrane wing,
Journal of Fluids and Structures, 45, 2014, 138–152.

[5] Hall, K. C., Thomas, J. P. and Clark, W. S., Computation
of Unsteady Nonlinear Flows in Cascades Using a Har-
monic Balance Technique, AIAA Journal, 40, 2002, 879–
886.

[6] McMullen, M., Jameson, A. and Alonso, J., Demon-
stration of Nonlinear Frequency Domain Methods, AIAA
Journal, 44, 2006, 1428–1435.

[7] Nardini, M., Illingworth, S. J. and Sandberg, R. D., Non-
linear Reduced-order Modeling of the Forced and Au-
tonomous Aeroelastic Response of a Membrane Wing us-
ing Harmonic Balance Methods, Journal of Fluids and
Structures - Submitted.

[8] Nardini, M., Illingworth, S. J. and Sandberg, R. D.,
Reduced-order modeling and feedback control of a flex-
ible wing at low Reynolds numbers, Journal of Fluids and
Structures, 79, 2018, 137–157.

[9] Nardini, M., Illingworth, S. J. and Sandberg, R. D.,
Reduced-order Modeling for Fluid-Structure Interaction
of Membrane Wings at Low and Moderate Reynolds
Numbers, 2018 AIAA Aerospace Sciences Meeting.

[10] Rojratsirikul, P., Wang, Z. and Gursul, I., Unsteady
fluid-structure interactions of membrane airfoils at low
Reynolds numbers, Experiments in Fluids, 46, 2009, 859–
872.

[11] Serrano-Galiano, S., Sandham, N. D. and Sandberg, R. D.,
Fluid – structure coupling mechanism and its aerodynamic
effect on membrane aerofoils, 1127–1156.

[12] Smith, R. and Shyy, W., Computation of unsteady lami-
nar flow over a flexible two-dimensional membrane wing,
Physics of Fluids, 7, 1995, 2175–2184.

[13] Song, A., Tian, X., Israeli, E., Galvao, R., Bishop, K.,
Swartz, S. and Breuer, K., Aeromechanics of Membrane
Wings with Implications for Animal Flight, AIAA Journal,
46, 2008, 2096–2106.

[14] Sygulski, R., Stability of membrane in low subsonic flow,
International Journal of Non-Linear Mechanics, 42, 2007,
196–202.

[15] Tiomkin, S. and Raveh, D. E., On the stability of two-
dimensional membrane wings, Journal of Fluids and
Structures, 71, 2017, 143–163.

[16] Waldman, R. M. and Breuer, K. S., Camber and aerody-
namic performance of compliant membrane wings, Jour-
nal of Fluids and Structures, 68, 2017, 390–402.

[17] Yao, W. and Marques, S., Prediction of Transonic Limit-
Cycle Oscillations Using an Aeroelastic Harmonic Bal-
ance Method, AIAA Journal, 53, 2015, 2040–2051.


