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Abstract

A preliminary study is made of the dynamics of Oscillating Wa-
ter Columns (OWCs), in which the amplitude of internal fluid
displacement is nonlinear. The OWC is a well-studied class of
ocean wave-energy converters. When the machine’s natural fre-
quency is appropriately tuned, it will resonate at the prevailing
ocean-swell frequency. Large amplitudes at resonance are de-
sirable since they maximise the power available for electricity
generation; however, large amplitudes also imply nonlinear be-
haviour. Most analyses of wave-energy converters of any class
assume linear dynamics. Furthermore, multiple machines are
now constructed in close proximity to maximise economic re-
turns, and hence they interact. The OWC is reduced to a sin-
gle degree-of-freedom nonlinear oscillator based on appropriate
simplifications of the Navier-Stokes equations. Nonlinear ma-
chines were then coupled together by inter-machine wave scat-
tering. It is found that provided wave amplitudes are realistic for
Southern Ocean conditions, linear theory remained reasonable
for both single and coupled machines. However, nonlinearities
could significantly reduce resonant power output.

Introduction

Wave Energy Converters (WEC) are machines that extract re-
newable energy from ocean waves. Although the first patent for
a WEC was filed in 1799 [10], the reciprocating (constantly re-
versing) flow created by wave action, plus the need to have the
designs of large machines in the ocean as simple as possible, has
meant that there is no obvious method of efficiently extracting
power from ocean waves. Consequently, they are at present over
250 companies with competing designs of WECs [5]. Despite
this apparent diversity, the majority of designs rely on the prin-
ciple of resonance: the machine is designed to have a natural
frequency with which it oscillates in response to a disturbance.
When the natural frequency is similar to the frequency of pre-
vailing ocean swell, resonance occurs. The resonating machine
oscillates with an amplitude greater than that of the incoming
waves; this represents power extracted from an area of the wave
field larger than the machine’s physical size.

Some concepts are now being installed in arrays or ‘farms’ to
achieve economies of scale. When the machine is a resonator, it
has the ability to interact significantly with its neighbours. In-
deed, early theories on WEC array interactions predicted that a
correctly-spaced array would deliver approximately 50% more
power than the same number of isolated machines, while an
incorrectly-spaced array would deliver approximately 50% less
[4]. Interaction occurs both via the diffraction of waves, if the
machine size is significant compared to the wavelength, and
also by the radiation of waves that represents the resonance, as
noted below. A substantial body of research has investigated ar-
ray interactions, e.g. [8, 11, 12, 6, 19, 7]. However, the majority
of studies assume the behaviour of the machine is governed by
linear dynamics, and that the waves it radiates are linear.

For a machine that is much smaller than the wavelength, the
radiated wave field is described by Hankel functions, which re-
duce rapidly in amplitude with distance from the origin. Thus,

even if the machine at the centre operates nonlinearly, it is rea-
sonable to continue to assume the radiated waves coupling it to
its neighbours are linear. Meanwhile, linearity of the diffracted
waves is retained provided the incoming swell is linear. Indeed,
recent studies suggest that nonlinearity in the coupling wave
fields has only a small influence on the array dynamics [22].

However, the intent of the WEC design is for the machine it-
self to resonate, and thus, by definition, reach a large amplitude
to maximise power extraction. Thus, the question is raised of
whether the dynamics of each individual machine needs to be
modelled as a nonlinear oscillator. Once the linear versus non-
linear dynamics of the individual machine is determined, the
machine may be coupled to its neighbours via coupling terms
which may be justifiably linear as noted above. In the present
paper, the dynamics of the oldest-established class of WEC, the
Oscillating Water Column (OWC) is investigated. To what ex-
tent can its behaviour be considered linear?

Formulation of individual-machine dynamics

As it oscillates, a WEC radiates waves of its own. In the
potential-flow paradigm conventionally used to model WECs,
e.g. [9, 8], the superposition of these radiated waves with the
incoming ocean swell represents a reduction in the net ampli-
tude of the ocean swell, and thus power extraction. Of course,
potential flow is conservative, so the useful power extracted
from the machine must be prescribed by a separate dissipative
term. Meanwhile, a component of the wave radiation repre-
sents power that is inevitably lost from the machine, because the
machine’s motion does not perfectly couple with the incoming
wave field. Likewise, this ‘radiation damping’ represents a dis-
sipative loss in the machine dynamics. The matching of dissipa-
tive fluid dynamics (quarantined within an imaginary boundary)
with the conservative potential-flow fields outside is an interest-
ing mathematical problem which may have parallels in allied
topics, such as ice-floe interactions with ocean waves e.g. [18].

The linear damping ratio for the machine dynamics, ζ, can be
considered to be composed of two terms, such that ζ = ζµ +ζP,
where ζµ represents all linear dissipative losses, conventionally
assumed to be dominated by wave radiation, and ζP represents
the useful power extracted. It is easy to show that for any lin-
ear, damped oscillator driven at resonance, the useful power
extracted is maximised when the controllable damping due to
power extraction is equal to the uncontrollable damping due to
all other losses [2, 10], so that ζµ = ζP. An immediate im-
plication is that a linear WEC can at most convert 50% of the
available power from ocean waves; the remainder must be lost
to dissipation. Below, we keep ζ as a combined and constant
parameter, which assumes that an operator will always seek to
draw the maximum useful power. However, it should be noted
that in general, the component of linear damping due to radia-
tion depends on frequency [9].

The OWC in its simplest form is a tube or duct open at both
ends, with the bottom opening of the duct immersed such that
a length L is underwater. The top of the duct is in the air, and
is fitted with a turbine designed to rotate in the same direction



in both the upwards and downwards motion of air driven by the
rising and falling water column [10]. An elementary considera-
tion of the momentum balance of this system shows that when
the water inside the tube is displaced infinitesimally from rest,
in a ‘piston-like’ motion such that the free surface remains flat,
it is a oscillator with natural frequency ω0 =

√
g/L where g is

the acceleration due to gravity. Effectively, the water contained
in the duct behaves as a liquid pendulum. Various versions of
OWCs have been powered by ocean waves since 1885 and a
number have been grid-connected [16].

Integration of the Navier-Stokes equations over the duct cross-
section and along the submerged duct length, as in [17], reduces
the momentum balance to an ordinary differential equation in
the vertical displacement of the free surface. Introducing the
scalings ζ−1F for length, where F is the amplitude of incoming
waves, and ω

−1
0 for time, leads to a momentum balance in the

non-dimensional vertical displacement of the free surface, δ,

(1+ εδ)δ̈+2ζδ̇+ εC f |δ̇|
3/4

δ̇+δ = ζeiαt , (1)

where α = ω/ω0, with ω being the frequency of the incoming
ocean waves forcing the machine, ε = F/(ζL), and C f is the
nonlinear damping co-efficient.

The parameter ε is small for forcing amplitudes F that are very
small relative to the submerged length L. Including ζ in the
scaling is convenient for analytic approximations of the nonlin-
ear behaviour, since it permits convergence of such approxima-
tions near the linear resonance. The component of the damp-
ing ratio due to linear radiation damping and laminar friction,
ζµ, can estimated from various theoretical analyses of OWCs
(e.g. [9, 15]) to be roughly 0.03-0.05 in deep water at reso-
nance. Other linear frictional losses would inevitably affect the
machine, adding to ζµ. Thus, as noted above, the overall value
of ζ including the equal damping ζP due to the useful power
drawn (the ‘power take-off’) would be roughly 0.1. Hence, ε

as defined in the present paper will remain less than unity for
forcing amplitudes less than roughly a tenth of the submerged
machine length. Under these circumstances ε may be useful
in analytic approximations that may aid understanding, as de-
scribed below. However, in the present paper, we also simply
integrate (1) in time to determine a nonlinear response for ar-
bitrary values of ε. Recalling that the present work ignores the
frequency-dependence of ζµ, the present results should be con-
sidered relevant close to the linear resonance.

There are two nonlinear terms in (1), a nonlinear inertia, εδδ̈,
which arises from the mass of water in the column varying with

displacement, and a nonlinear dissipation, εC f |δ̇|
3/4

δ̇. Regard-
ing C f , experiments have shown that the flow in such systems
can be laminar at zero velocity, then transition to turbulence
during the deceleration phase, then re-laminarise [1]. It is still
unclear what damping models to use in order to correctly cap-
ture the possibility of periodic re-laminarisation of an otherwise
turbulent flow [14]; the laminar fraction of the oscillation cycle
can be 50% [1]. The maritime engineering literature has estab-
lished empirical correlations for the drag on structures due to
ocean waves, such as the Morison equation, e.g. [20], while
other models are appropriate for reciprocating flow in ducts and
tubes. Consideration of the available models in the literature by
[15] suggests the best model for C f is given by

C f = 0.15816 Reω
−1/4, (2)

where the oscillatory or ‘kinetic’ Reynolds number is given by
Reω = ωD2/ν, with D being the horizontal length-scale of the
duct and ν the kinematic viscosity. This assumes the ‘worst
case’ scenario where the full-scale flow is turbulent throughout

the oscillation cycle. In any case, we will shortly see that even
in the worst-case scenario, the nonlinearity owing to turbulent
damping has a small influence relative to the nonlinearity due to
inertia. However, (2) accounts only for turbulent wall friction
and not for vortex formation at the OWC entrance, which will
need to be considered in a future study.

It is possible to estimate some of the effects of the nonlinearities
provided ε is small, by expanding δ as

δ = δ0 + εδ1 + ε
2
δ2 + . . . , (3)

where δ0 is the leading-order (linear) solution, δ1 is the O(ε)
solution, and so on. At O(ε), the variable δ1 appears in a linear
oscillator equation forced by the two nonlinear terms already

known from the leading-order solution, δ0δ̈0 and C f |δ̇0|
3/4

δ̇0.
However, since C f � 1 for any realistic conditions, the non-
linear inertia term dominates. Since δ0δ̈0 varies as cos2(αt), it
has a time dependence of 2αt and thus will produce a nonlinear
resonance in the δ1 solution at α = 0.5.

Method

Integration of (1) was undertaken for a range of dimensionless
forcing frequencies α. The parameter ε was allowed to take val-
ues greater than unity, so that asymptotic expansions such as (3)
would no longer be valid. The initial displacement and velocity
were set at zero; variations from these initial conditions affected
the time taken for transients to die out, but did not affect the fi-
nal results. The intent was to synthesise a version of the classi-
cal linear response function, but under the nonlinear dynamics.
Therefore, peaks and troughs in the time series were identified,
and the nonlinear ‘amplitude’ of response, X , was defined as
half the difference between a peak and the preceding trough.
The integration was run until X converged to within 10−4 to en-
sure transients had died out, which typically took the order of
ten forcing cycles or less. However, around α = 2 for ε > 1, a
small subharmonic at α/2 was a persistent feature of the forced
response, which meant that every second value of X differed by
about 10−2, preventing convergence between α = 2.0 and 2.1.
To overcome this, X was averaged over two cycles, which had
no effect on the response elsewhere.

The largest value of ε tested was 1.69; above this value, bi-
furcations in the nonlinear dynamics introduce further high-
amplitude frequencies into the timeseries that make the sim-
plistic method of measuring peaks and interpreting them as a
response function inappropriate. Consider what the value of
ε = 1.69 translates to in practical terms. On the coasts of Aus-
tralia exposed to Southern Ocean swell, the wave frequency is
typically below 0.1 Hz [3], so ω is less than about 0.6 rad s−1.
To resonate at this frequency requires a length L of about 25 m,
and indeed an OWC constructed for these conditions in 2014
had roughly this internal water-column length. Hence, if ε = 1
for ζ = 0.1, forcing wave amplitudes should be 2.5 m – a wave
height of 5 m. The average significant wave height in Perth
is approximately 3-4 m [3]. Meanwhile, ε = 1.69 corresponds
to waves over 8 m, which are beyond the range expected for
normal operations in any Australian waters at any time of year
[3]. Although ζ may be lower away from resonance owing to
the frequency-dependence of ζµ, the largest amplitudes remain
those at resonance. Thus, the largest nonlinearity explored in
the present paper represents roughly twice the wave heights
likely to be relevant in practice.

Nonlinear single machine results

Even for the extreme value of ε = 1.69, the dissipative non-
linearity has only a small influence on the response amplitude,
and only at resonance. The peak is reduced by about 9%, con-
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Figure 1: Amplitudes of nonlinear response X/F of water in-
side a single OWC (thick line) as a function of dimensionless
forcing frequency α, considering both inertia-term nonlinearity
and turbulent-dissipation nonlinearity. Thin line: classical re-
sponse function for a linear oscillator. Damping ratio ζµ = 0.1;
ε has the extreme value of 1.69.

sistently with other findings [15] and as predictable from the
asymptotic considerations above.

Including both the nonlinear inertia and the nonlinear damp-
ing terms gives the response shown in figure 1. The resonant
peak is reduced by about 15% and has shifted to a lower fre-
quency of α = 0.94. There is also a small peak at α = 0.5,
consistent with the nonlinear resonance at O(ε) expected from
the asymptotic considerations. The reduction in resonant peak
height scales with ε, and thus is approximately proportional to
F/L. At F/L of 0.0846 (ε = 0.846 for ζ = 0.1), there is a re-
duction in resonant peak height of about 7%. For the Southern
Ocean, ε = 0.846 corresponds to wave heights of about 4 m,
which are high but realistic [3]. Even at ε = 1.69, timeseries
display only slight variations from sinusoidal behaviour, and at
ε = 0.846 the behaviour is closer still to sinusoidal.

Nonlinear coupled-oscillator model and results

To examine the influence of realistic Southern Ocean conditions
(ε = 0.846) on the nonlinear dynamics of interacting machines,
a pair of machines was modelled by a set of equations derived
from (1). Two issues must be considered: the derivation of the
assumed-linear coupling between the machines; and the treat-
ment of multiple scattering phenomena. In multiple scattering,
there is an infinite series of wave reflexions linking the ma-
chines, requiring an awkward, infinitely nested set of sums [13].

To derive the coupling terms representing the interactions, con-
sider the surface-wave velocity potential around WECs, φ. This
is usually represented as the sum of three components (e.g. [4]),

φ = φi +φd +φr, (4)

where the terms on the right-hand side are the incident,
diffracted and radiated potentials respectively. The potential φr
is a solution to Laplace’s equation in cylindrical co-ordinates
(r,θ,z). Any geometry of machine operating in any manner can

be represented as

φr =
∞

∑
j=1

A jHm(kr)eimθZ j(z) eiαt , (5)

where A j is a complex amplitude, Hm are Hankel functions,
Z j(z) is the classical solution to Laplace’s equation for the verti-
cal structure of ocean waves, and the index j represents a unique
combination of the wavenumber k, where k = 2π/λ, and of the
azimuthal wavenumber m, with λ being wavelength. In the lit-
erature, e.g. [9], a set of functions in the form of (5) is used not
only to represent φr but also φi and φd . The value of φr created
by a neighbouring machine some distance r = d away repre-
sents its driving applied to the local machine, and vice versa.

To account for multiple scattering, the physical displacement δ

in (1) is replaced with a new ‘self-consistent’ variable xi, where
the index i identifies each machine. The self-consistent ap-
proach [21, 13] eliminates the need for an infinitely nested set of
sums. Unfortunately, x is an unphysical variable – it represents
the value of the physical variable δ after all multiple-scattering
interactions have occurred. However, if carefully interpreted,
the self-consistent approach is an appropriate technique [13].

For a pair of machines, the coupled model, using the same scal-
ings as for (1), is

ẍ1 + γẍ2(t− τ)+2ζẋ1 + x1 + εN (x1) = ζeiαt ,

ẍ2 + γẍ1(t− τ)+2ζẋ2 + x2 + εN (x2) = ζeiαt , (6)

in which γ represents the strength of the coupling, and τ is the
time delay owing to propagation from one machine to another.
The values of γ and τ are determined from φr in (5) [7] and
are the magnitude and phase of the complex number usually
called the ‘hydrodynamic coefficient’ in WEC literature. The
nonlinear term is given by N (xi) = xiẍi +C f |ẋi|3/4ẋi, as in (1).

The results are shown in figure 2, zoomed-in around the reso-
nance. Six machine radii separate the machine centres, corre-
sponding to about 0.34λ. The coupled linear machines (thick
grey line) show a slightly higher response than the single linear
machine, as expected for these parameters [4], and also a lower
resonance frequency. Now, comparison of the coupled nonlin-
ear machines (thick black line) with the coupled linear machines
(thick grey line) shows a slight reduction in resonant frequency
and a drop in response amplitude of about 10%. Since power
is proportional to the square of amplitude, this is a significant
drop in power from the prediction of linear theory.

Conclusions

Nonlinearities in an oscillating water column were studied us-
ing a simple ordinary differential equation representation of the
dynamics of a single OWC. Two nonlinearities were consid-
ered, the displacement-dependent inertia and the parameterised
turbulent losses. The nonlinear inertia was found to be more
significant, reducing the amplitude at resonance by about 15%,
but even so only under conditions representing exceptionally
large incident waves that would not be expected under normal
conditions. Under realistic conditions, a reduction of resonant
amplitude of only about 8% occurs, and the time dependence
appears virtually sinusoidal. A calculation with two coupled
nonlinear machines showed a reduction in resonant frequency
beyond that expected if their behaviour were linear. There is
also an approximately 10% reduction in amplitude, relative to
the pair of coupled linear machines. Based on these results, it is
possible that the dynamics of coupled OWCs could be modelled
assuming linear machine dynamics, but care should be taken to
check the nonlinear amplitude near resonance.
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Figure 2: Amplitudes of nonlinear response X/F of water in-
side two coupled, nonlinear OWCs (thick black line) as a func-
tion of dimensionless forcing frequency, considering both non-
linearities as in figure 1. Thin line: classical response function
for a linear oscillator. Dashed line: response of a single, nonlin-
ear OWC. Thick grey line: response of the two coupled OWCs
assuming linear behaviour. Damping ratio ζµ = 0.1, ε = 0.846.

The present nonlinear results assume the linear damping due to
all factors, including the power take-off, is a constant. In real-
ity, the linear radiation damping is frequency-dependent. The
present calculations are therefore of greatest validity near res-
onance. Furthermore, the nonlinear damping term represented
turbulent losses on the internal walls bounding the water col-
umn, but not losses due to entrance vortex formation. Thus,
the present work must be considered preliminary and should be
revisited to make a more comprehensive determination of the
nonlinear behaviour.
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